Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Heliyon ; 10(12): e33165, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021951

ABSTRACT

Bangladesh Agricultural Research Institute (BARI) released two beautiful Lilium varieties in 2020. In the same year the farmers in Gazipur district reported a set of disease symptoms on these flowers and alerted the Plant Pathology Division of BARI. Subsequent investigation confirmed the symptoms as Botrytis gray mold (BGM), caused by Botrytis cinerea. The pathogen identity was confirmed through ITS gene sequencing. A series of in vitro and in planta experiments conducted to understand the symptoms, the optimal growth condition for the pathogen, potential resistant Lilium genotypes, effective chemical treatments and potential of biological control agents to combat the disease. B. cinerea exhibited the highest growth in V8 media (88.55 mm) at pH6 (85.32 mm) and temperature between 20 and 25 °C (89.56 mm), and pH6 (85.32 mm). Screening revealed that five oriental-originated genotypes provided lower disease incidence (31.66-41.66 %), and were categorized as moderately resistant to resistant in disease reaction. Six fungicides successfully reduced mycelial growth in vitro. Moreover, Ipridione provided the lowest % disease incidence (27.11) and % disease severity (5.33) in the in planta nethouse experiment. Therefore, this fungicide was recommended to the farmers initially. Additionally, two fungal biocontrol agents Epicoccum nigrum EJS002 and Trichoderma ThC003, demonstrated effectiveness in reducing leaf lesion size over control in a detach leaf assessment technique. In conclusion, this study presents BGM of Lilium as a farmers issue for the first time in Bangladesh. It also provides valuable insights into its management, recommending specific chemical fungicides for farmers to use, and two fungal antagonists (E. nigrum EJS002 and Trichoderma ThC003) as potential disease control agent.

2.
Plant Dis ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021154

ABSTRACT

Guava (Psidium guajava L.) is a popular fruit crop that is widely cultivated in Thailand. In November 2023, brown spot disease on guava was observed during postharvest storage at 22 to 31°C and 70 to 75% relative humidity over a period of 3 to 7 days in Fang District, Chiang Mai Province, Thailand. The disease incidence was ~20% of 100 fruits per pallet box. The disease severity on each fruit ranged from 40 to 70% of the surface area affected by lesions. The symptoms appeared as circular to irregular brown to dark brown spots, ranging from 5 to 30 mm in diameter. Fungi were isolated from lesions using a single conidial isolation method (Choi et al. 1999). Two fungal isolates (SDBR-CMU497 and SDBR-CMU498) with similar morphology were obtained. Colonies on potato dextrose agar (PDA) and malt extract agar (MEA) were 65 to 67 and 29 to 38 mm in diameter, respectively after incubation for 1 week at 25°C. Colonies on PDA and MEA were flat, slightly undulate, greenish gray in the center, greyish green at the margin; reverse black. Both isolates produced asexual structures. Pycnidia were black, granular, and grouped. Conidiogenous cells were hyaline, subcylindrical to cylindrical, 8.5 to 17.5 × 3 to 5.5 µm. Conidia were single-celled, hyaline, obovoid to ellipsoid, 5.2 to 9.4 × 3.6 to 7.5 µm (n = 50), smooth-walled, with a single apical appendage. Morphologically, both isolates resembled Phyllosticta capitalensis (Wikee et al. 2013). The internal transcribed spacer (ITS) region, large subunit (nrLSU), translation elongation factor 1-alpha (tef1-α), actin (act), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified using primer pairs ITS5/ITS4, LROR/LRO5, EF1-728F/EF2, ACT-512F/ACT-783R, and GPD1-LM/GPD2-LM, respectively (White et al. 1990; Zhang et al. 2022). Sequences were deposited in GenBank (ITS: PP946770, PP946771; nrLSU: PP948677, PP948678; tef1-α: PP948012, PP948013; act: PP948014, PP948015; GAPDH: PP948016, PP948017). Maximum likelihood phylogenetic analyses of the concatenated five genes identified both isolates as P. capitalensis. Thus, both morphology and molecular data confirmed the fungus as P. capitalensis. To confirm pathogenicity, healthy commercial guava fruits cultivar Kim Ju were surface disinfected by 0.1% NaClO for 3 min, rinsed three times with sterile distilled water, and wounded (Cruz-Lagunas et al. 2023). Conidia were collected from 2-week-old cultures on PDA and suspended in sterile distilled water. Fifteen microliters of a 1 × 106 conidia/ml suspension were dropped onto the wounded fruits. Mock inoculations were used as a control with sterile distilled water. Ten replications were conducted for each treatment and repeated twice. The inoculated fruits were stored in individual sterile plastic boxes at 25°C with 80 to 90% relative humidity. After 7 days, all inoculated fruits exhibited brown to dark brown lesions, while control fruits were asymptomatic. Phyllosticta capitalensis was consistently reisolated from the inoculated tissues on PDA to complete Koch's postulates. Prior to this study, P. capitalensis was known to cause brown or black spot disease on guava fruits cultivated in fields in China (Liao et al. 2020), Egypt (Arafat 2018), and Mexico (Cruz-Lagunas et al. 2023). To our knowledge, this is the first report of P. capitalensis causing postharvest brown spot disease on guava fruit in Thailand. The results will inform epidemiological investigations and future approaches to managing this disease.

3.
Sci Rep ; 14(1): 14720, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926415

ABSTRACT

Dental calculus is a microbial biofilm that contains biomolecules from oral commensals and pathogens, including those potentially related to cause of death (CoD). To assess the utility of calculus as a diagnostically informative substrate, in conjunction with paleopathological analysis, calculus samples from 39 individuals in the Smithsonian Institution's Robert J. Terry Collection with CoDs of either syphilis or tuberculosis were assessed via shotgun metagenomic sequencing for the presence of Treponema pallidum subsp. pallidum and Mycobacterium tuberculosis complex (MTBC) DNA. Paleopathological analysis revealed that frequencies of skeletal lesions associated with these diseases were partially inconsistent with diagnostic criteria. Although recovery of T. p. pallidum DNA from individuals with a syphilis CoD was elusive, MTBC DNA was identified in at least one individual with a tuberculosis CoD. The authenticity of MTBC DNA was confirmed using targeted quantitative PCR assays, MTBC genome enrichment, and in silico bioinformatic analyses; however, the lineage of the MTBC strain present could not be determined. Overall, our study highlights the utility of dental calculus for molecular detection of tuberculosis in the archaeological record and underscores the effect of museum preparation techniques and extensive handling on pathogen DNA preservation in skeletal collections.


Subject(s)
Dental Calculus , Metagenomics , Mycobacterium tuberculosis , Paleopathology , Tuberculosis , Dental Calculus/microbiology , Dental Calculus/history , Humans , Metagenomics/methods , Paleopathology/methods , Tuberculosis/diagnosis , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , DNA, Bacterial/genetics , Male , Treponema pallidum/genetics , Treponema pallidum/isolation & purification , Syphilis/diagnosis , Syphilis/microbiology , Syphilis/history , Female , Adult , Metagenome/genetics , Middle Aged
4.
Plant Dis ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812366

ABSTRACT

Pepper (Capsicum annuum L.) is a popular vegetable and condiment consumed around the world. In the Guizhou Province of China, peppers are the most commonly grown crop on 300,000 planted hectares. A variety of diseases routinely occur on peppers in this province, resulting in yield losses (Liu et al., 2022). Root rot is one of the most common symptoms and produces poor root growth and wilting of pepper. In April 2023, symptomatic pepper plants displaying stunting, dwarfism, wilting, and root browning were collected from five fields in Guizhou, with disease incidence ranging from 10% to 20%. The collected rotten roots were cleaned with sterilize distilled water and placed in selective V8 juice agar (V8A) medium (15% clarified V8 juice with 2.5 g/L CaCO3 and 2% agar) containing nystatin, ampicillin, rifampicin, and miconazole, and incubated at 25℃ for 1 to 2 days (Morita and Tojo, 2007). Eight isolates with similar colony morphology were transferred to V8A medium via hyphal tipping, and incubated at 25℃ in the dark. Colony and sexual structures were observed using a microscope. Mycelium was aseptate and formed white cottony colonies. Globose, intercalary, or terminal hyphal swellings were observed with a diameter of 20.5 to 25 µm (average: 22 µm), and aplerotic oospores had a diameter of 15 to 20 µm (average: 17.5 µm) with a wall thickness of approximately 2 µm. Three representative isolates HSLJ-3, LJG-1, and LJY-2 were chosen for further molecular identification. Sequences of the internal transcribed spacer (ITS) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes were identified using primer sets ITS4/ITS5 (White et al., 1990) and OomCoxI-Levup/OomCoxI-Levlo (Robideau et al., 2011), respectively. All sequences were deposited in GenBank (accession nos. OR554005, PP083310, and PP083420 for ITS, and OR529247, PP093821 and PP093822 for cox1). BLAST analysis revealed all ITS and cox1 sequences exhibited 100% identity with Globisporangium ultimum (Pythium ultimum) isolate BR850 (GenBank accession nos. HQ643892.1 and HQ708933.1 for ITS and cox1, respectively). Phylogenetic analysis was performed by the maximum-likelihood method on the CIPRES web portal (https://www.phylo.org/portal2/login!input.action, accessed on 9 January 2024). For pathogenicity tests, each isolate was cultured in V8A medium containing 50 autoclaved wheat seeds at 25℃ for 7 days. Budding pepper seedling (cv. Huaxi) was transplanted into a 0.4 L pot containing sterilized commercial potting mix (Seedling Cultivation Substrate, Hunan Xianghui Agricultural E-commerce Co., Ltd.) which was saturated with deionized water. Eight infected and non-infected wheat seeds were placed near the roots of five pepper seedlings, respectively. Plants were placed in an artificial climate chamber, with a 14 h photoperiod and approximately 75% relative humidity at 25℃. After 14 days, inoculated seedlings showed symptoms of stunting, wilting, and rotting roots similar to those observed in the field. No disease was observed on the non-inoculated control plants. The pathogen was isolated from infected pepper roots and confirmed as G. ultimum by morphological and molecular analyses as previously described. This is the first report of G. ultimum causing root rot on pepper in Guizhou, China. This finding is critical to the discover of treatment options for this pathogen, thereby improving management practices to reduce yield losses in pepper.

5.
J Fungi (Basel) ; 10(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786670

ABSTRACT

The greater yam (Dioscorea alata), a widely cultivated and nutritious food crop, suffers from widespread yield reduction due to anthracnose caused by Colletotrichum gloeosporioides. Latent infection often occurs before anthracnose phenotypes can be detected, making early prevention difficult and causing significant harm to agricultural production. Through comparative genomic analysis of 60 genomes of 38 species from the Colletotrichum genus, this study identified 17 orthologous gene groups (orthogroups) that were shared by all investigated C. gloeosporioides strains but absent from all other Colletotrichum species. Four of the 17 C. gloeosporioides-specific orthogroups were used as molecular markers for PCR primer designation and C. gloeosporioides detection. All of them can specifically detect C. gloeosporioides out of microbes within and beyond the Colletotrichum genus with different sensitivities. To establish a rapid, portable, and operable anthracnose diagnostic method suitable for field use, specific recombinase polymerase amplification (RPA) primer probe combinations were designed, and a lateral flow (LF)-RPA detection kit for C. gloeosporioides was developed, with the sensitivity reaching the picogram (pg) level. In conclusion, this study identified C. gloeosporioides-specific molecular markers and developed an efficient method for C. gloeosporioides detection, which can be applied to the prevention and control of yam anthracnose as well as anthracnose caused by C. gloeosporioides in other crops. The strategy adopted by this study also serves as a reference for the identification of molecular markers and diagnosis of other plant pathogens.

6.
BMC Bioinformatics ; 25(1): 185, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730317

ABSTRACT

Surveillance for genetic variation of microbial pathogens, both within and among species, plays an important role in informing research, diagnostic, prevention, and treatment activities for disease control. However, large-scale systematic screening for novel genotypes remains challenging in part due to technological limitations. Towards addressing this challenge, we present an advancement in universal microbial high resolution melting (HRM) analysis that is capable of accomplishing both known genotype identification and novel genotype detection. Specifically, this novel surveillance functionality is achieved through time-series modeling of sequence-defined HRM curves, which is uniquely enabled by the large-scale melt curve datasets generated using our high-throughput digital HRM platform. Taking the detection of bacterial genotypes as a model application, we demonstrate that our algorithms accomplish an overall classification accuracy over 99.7% and perform novelty detection with a sensitivity of 0.96, specificity of 0.96 and Youden index of 0.92. Since HRM-based DNA profiling is an inexpensive and rapid technique, our results add support for the feasibility of its use in surveillance applications.


Subject(s)
Genotype , Machine Learning , DNA, Bacterial/genetics , Algorithms , Nucleic Acid Denaturation/genetics
7.
Plant Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769291

ABSTRACT

Lithocarpus polystachyus (Wall. ex A. DC.), an economically valuable plant species belonging to the Fagaceae family, has been used as herbal tea to prevent diabetes because of the high content of flavonoids and dihydrochalcones in the leaves (Shang et al. 2022). In July 2022, the severe leaf lesion on L. polystachyus was first observed in Yongshun County, Xiangxi autonomous prefecture (28°45'34''N, 109°40'11''E), Hunan province, China. Yongshun County is characterized by hills and mountains, situated in a subtropical region with a mild and humid climate. A second outbreak in July 2023 was observed in the same area. The observed incident rates in the past two years were 87.3% and 90.6%, respectively. Once infected, almost all plant leaves will be infected, leading to a substantial reduction in the yield of L. polystachyus. The disease presented symptoms characterized by round or irregularly shaped lesions that initially manifested as brown spots. These lesions frequently merged into larger, dark-brown areas along the leaf margins before eventually wilting. To ascertain the pathogenic species responsible for this disease, fungal isolation was conducted using a tissue separation method (Xu et al. 2023). The infected leaf tissues were surface-disinfected with 75% ethanol and 0.1% HgCl then small pieces (1×1 cm), were placed onto potato dextrose agar (PDA) medium (Sigma-Aldrich, 70139) and incubated at 28°C for 6-9 days. Colonies were villiform and initially white, becoming gray after 6 days. Sterilized dissecting needles were used to pick single hyphal tips from the edge of the colonies and placed onto PDA for strain purification. After 15 days, the purified colonies grew fluffy white hyphae with abundant conidia. The conidia were cylindrical, had round ends, and ranged from 5.75 to 14.83 µm long and 1.75 to 2.38 µm wide (n=50). According to morphological and cultural characteristics, these isolates were preliminarily identified as Colletotrichum fructicola Prihast., L. Cai & K.D. Hyde (Damm et al. 2012). To further affirm the identity of the pathogen, DNA was extracted from mycelia using a DNA extraction kit (Sigma-Aldrich, G2N70). The internal transcribed spacer (ITS) region, the transcription elongation factor (TEF), and the actin (ACT) gene were then amplified from genomic DNA extracted from three isolates (Cof1, Cof2, and Cof3) using specific primers. The primers utilized were ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R and ACT-512F/ACT-783R (Carbone and Kohn 1999) for ITS region, transcription elongation factor gene and actin gene amplification, respectively. Sequence identity indicated that these isolates were highly homologous to C. fructicola. The ITS (Genbank No. PP002156, OR880553 and OR880554), TEF (No. PP061421, PP061422 and PP061423), and ACT (No. PP061418, PP061419 and PP061420) sequences of the isolates Cof1, Cof2, and Cof3 shared 99 to 100% identity with their counterparts (No. OR083309, MF627961, and OQ427895) in C. fructicola, respectively. A neighbor-joining phylogenetic tree constructed using MEGA11 (Tamura et al. 2021) also indicated that these isolates were C. fructicola. Both morphological and molecular characteristics confirmed the identification of this pathogen as C. fructicola. Colletotrichum species are known to cause anthracnose disease in a variety of economically important crops (Sharma and Kulshrestha 2015). To further validate the ability of the isolated C. fructicola to induce the same symptoms as observed in the field, the pathogenicity assay was assessed following Koch's postulates (Gradmann, 2014). Conidial suspensions (1×105 conidia per mL) from three isolates were individually inoculated onto artificially wounded leaves of 3-year-old L. polystachyus. Negative controls were established by inoculating leaf wounds with sterile distilled water. The plants were incubated in a greenhouse at 28°C and 90% humidity with a 12-h photoperiod. The experiment was replicated three times. Necrotic lesions were observed on all pathogen-inoculated wounds within 6 days after inoculation, whereas controls showed no observable symptoms. Morphological and molecular characterization of re-isolated pathogens from infected leaves indicated that the pathogens were identical. To our knowledge, this is the first report of anthracnose of L. polystachyus caused by C. fructicola in China. Farmers in the local mountainous areas are economically reliant on L. polystachyus production, while anthracnose has caused over half of the trees to lose their commercial value, resulting in significant economic losses. Our findings hold great promise for advancing strategies in the prevention and treatment of anthracnose in L. polystachyus.

8.
J Fungi (Basel) ; 10(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667926

ABSTRACT

Alternaria leaf blight has recently been described as an emerging fungal disease of apple trees which is causing the significant damage in the apple-growing areas of Tianshui and Jingning, Gansu, China. In the present study, the pathogen species involved in apple leaf blight and its biological characteristics were identified, and the inhibitory activity of different botanical fungicides against the pathogen was evaluated in vitro. Four strains were isolated from the symptomatic areas of necrotic apple leaves, and initially healthy leaves showed similar symptoms to those observed in orchards after inoculation with the ABL2 isolate. The ABL2 isolate was identified as Alternaria tenuissima based on the morphological characteristics of its colonies, conidiophores, and conidia, and this was also confirmed by multi-gene sequence (ITS, OPA10-2, Alta-1, and endoPG) analysis and phylogenic analysis. The optimum temperature, pH, carbon source, and nitrogen source for the growth of A. tenuissima mycelia were 28 °C, 6-7, soluble starch, and soy flour, respectively. In addition, the botanical fungicide eugenol exhibited the highest inhibitory effect on the mycelial growth and conidia germination of A. tenuissima, and the median effective concentration (EC50) values were 0.826 and 0.755 µg/mL, respectively. The protective and curative efficacy of eugenol were 86.85% and 76.94% after inoculation in detached apple leaves at a concentration of 4 µg/mL. Our research provides new insights into the control of apple leaf blight disease by applying botanical fungicides.

9.
Plant Dis ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654533

ABSTRACT

Cherry blossom (Cerasus serrulata) is a plant with important garden applications. It is a newly introduced exotic plants in the Arar region of Xinjiang, China (40°41'18.19″N,81°43'50.55″E). In October 2022, it was discovered that about 30% of cherry blossoms had a canker disease. The leaves of the sick branches were dired, the branches themselves were damaged, with dark brown color inside. Orange-yellow conidia horns were produced in humid condition. Samples were collected from fifteen trees exhibiting notable symptoms. The diseased junctions of the infected shoots were chopped into small pieces and subjected to surface sterilization by using 70% ethanol for 30s, 1% NaClO solution for one minute, and sterile distilled water three times (Chen et al. 2016). The representative strain YINGHUA-1 was chosen for identification by molecular biology and morphology. After five days of incubation at 26℃ on PDA media, colonies of white fluffy mycelium were produced from the YINGHUA-1 strain. After 25 days of PDA culture, the production of pycnidia was first observed, circular, black. The pycnidia began to produce conidia at 30 days. The conidia was translucent without septum, with a slightly curved single cell and smooth surface. Pycnidia was spherical and flat, with a single black aperture at the top that resembles a nearly round hole, the chamber was made up of several tiny chambers separated by a shared wall, and its diameter ranges from 900-1900 µm. The size of the conidium was 3.7-6.6×1.1-1.9 µm (n=20). The intrinsic transcriptional spacer (ITS), transcriptional elongation factor (tef-1α), and ß-tubulin (tub2) gene moieties of rDNA were sequenced using ITS1/ITS4, EF1-728F/EF1-986R, and Bt2a/Bt2b primers, respectively(Zhang et al. 2014). The amplified sequences of ITS region (Accession No. OR855907), tub2 (Accession No. OR865863) and tef-1α (Accession No. OR865864) were deposited in the GenBank. BLAST searches of the sequences revealed 99.59% identity (474/476 bp) of the ITS sequence, 98.63% identity (216/219 bp) of the tef-1α sequence, and 98.55% identity of the tub2 sequence (339/344 bp) with C. ailanthicola CFCC59446 (accessions OR826163, OR832040, and OR832062, respectively.) Phylogenetic analyses were performed with Iqtree v.1.6.12 for maximum likelihood (ML). Confidence levels for the nodes were determined using 1000 replicates of bootstrapping methods. Based on phylogenetic analysis and morphological characteristics, the pathogen was identified as C. ailanthicola. The pathogenicity of C. ailanthicola was confirmed by inoculation of 1-year-old shoots (5 replicates of this experiment). After 7 days, symptoms of inner bark discoloration were visible on xylem of branches and the same fungus was re-isolated from the inoculated shoots, with no lesions on the control shoots. C. ailanthicola is only known from a single host plant, Ailanthus altissima,in China (Fan et al.2020). As far as we know, this is the first report of C. ailanthicola harmings C. serrulata in China.

10.
Microbiol Spectr ; 12(6): e0011724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687063

ABSTRACT

Oxford Nanopore sequencing is one of the high-throughput sequencing technologies that facilitates the reconstruction of metagenome-assembled genomes (MAGs). This study aimed to assess the potential of long-read assembly algorithms in Oxford Nanopore sequencing to enhance the MAG-based identification of bacterial pathogens using both simulated and mock communities. Simulated communities were generated to mimic those on fresh spinach and in surface water. Long reads were produced using R9.4.1+SQK-LSK109 and R10.4 + SQK-LSK112, with 0.5, 1, and 2 million reads. The simulated bacterial communities included multidrug-resistant Salmonella enterica serotypes Heidelberg, Montevideo, and Typhimurium in the fresh spinach community individually or in combination, as well as multidrug-resistant Pseudomonas aeruginosa in the surface water community. Real data sets of the ZymoBIOMICS HMW DNA Standard were also studied. A bioinformatic pipeline (MAGenie, freely available at https://github.com/jackchen129/MAGenie) that combines metagenome assembly, taxonomic classification, and sequence extraction was developed to reconstruct draft MAGs from metagenome assemblies. Five assemblers were evaluated based on a series of genomic analyses. Overall, Flye outperformed the other assemblers, followed by Shasta, Raven, and Unicycler, while Canu performed least effectively. In some instances, the extracted sequences resulted in draft MAGs and provided the locations and structures of antimicrobial resistance genes and mobile genetic elements. Our study showcases the viability of utilizing the extracted sequences for precise phylogenetic inference, as demonstrated by the consistent alignment of phylogenetic topology between the reference genome and the extracted sequences. R9.4.1+SQK-LSK109 was more effective in most cases than R10.4+SQK-LSK112, and greater sequencing depths generally led to more accurate results.IMPORTANCEBy examining diverse bacterial communities, particularly those housing multiple Salmonella enterica serotypes, this study holds significance in uncovering the potential of long-read assembly algorithms to improve metagenome-assembled genome (MAG)-based pathogen identification through Oxford Nanopore sequencing. Our research demonstrates that long-read assembly stands out as a promising avenue for boosting precision in MAG-based pathogen identification, thus advancing the development of more robust surveillance measures. The findings also support ongoing endeavors to fine-tune a bioinformatic pipeline for accurate pathogen identification within complex metagenomic samples.


Subject(s)
Algorithms , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Metagenome , Nanopore Sequencing , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Computational Biology/methods , Salmonella enterica/genetics , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Metagenomics/methods , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/classification
11.
J Fish Dis ; : e13936, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421366

ABSTRACT

During breeding, some oriental river prawns (Macrobrachium nipponense, de Haan), an important aquaculture species in China, exhibit yellowish-brown body colouration, reduced appetite, and vitality. Diseased prawns revealed characteristic emulsifying disease signs, including whitened musculature, hepatopancreatic tissues, milky haemolymph, and non-coagulation. The present study investigated the causative agent of M. nipponense infection through isolation, histopathology, molecular sequencing, and infection experiments. The pathogenic strain exhibited distinctive white colonies on Bengal red medium, with microscopic examination confirming the presence of yeast cells. Histopathological analysis revealed prominent pathological alterations and yeast cell infiltration in muscles, hepatopancreas and gills. Additionally, 26S rDNA sequencing of the isolated yeast strain LNMN2022 revealed Metschnikowia bicuspidata (GenBank: OR518659) as the causative agent. This strain exhibited a 98.28% sequence homology with M. bicuspidata LNMB2021 (GenBank: OK094821) and 96.62% with M. bicuspidata LNES0119 (GenBank: OK073903). The pathogenicity test confirmed that M. bicuspidata elicited clinical signs in M. nipponense consistent with those observed in natural populations, and the median lethal concentration was determined to be 3.3 × 105 cfu/mL. This study establishes a foundation for further investigations into the host range and epidemiological characteristics of the pathogen M. bicuspidata in aquatic animals and provides an empirical basis for disease management in M. nipponense.

12.
Plant Dis ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386300

ABSTRACT

The genus Passiflora, commonly known as passion fruit, originated in South America, is an economically important horticulture crop and widely distributed in the tropics and subtropics. Yellow passion fruit (Passiflora edulis f. flavicarpa) and purple passion fruit (Passiflora edulis f. edulis) are the two most planted species (Santos-Jiménez et al., 2022), which have been largely cultivated in southern China. The average annual production reaches 600,000 tons, of which yellow fruit accounts for more than 70% (Zhou et al., 2022). In 2022 to 2023, a disease caused flower rot severely in passion fruit plantations. The incidence rate was generally 10% in purple passion fruit, with an incidence up to 60% in yellow passion fruit 'Qinmi No. 9'. Flower rot occurs mainly in the rainy season, especially during periods of prolonged rain. Infected flowers had black patches that were water-soaked on the interior of the flower bud. The patches covered the entire flower bud, and fluffy mycelium and sporangia developed, which caused the flower bud rotten and abscised easily. Five symptomatic flowers from Wuhua, Guangdong (23°23'N, 115°18'E) and 8 symptomatic flowers from Shangsi, Guangxi (21°15'N, 107°98'E) of 'Qinmi No. 9' were collected during flowering period in 2022 and 2023. Diseased flower pieces were surface-sterilized with 70% ethanol for 2 to 3 min, rinsed with sterile distilled water 3 times, and placed on PDA medium at 25℃ in darkness. Four and 6 fungal isolates with similar morphology were isolated from the infected samples of Wuhua and Shangsi, respectively. Two isolates, PRFJ01 from Wuhua and PRGX02 from Shangsi, were randomly selected for further study. Purified fungal colonies at the age of 3 days accompany with diffuse cottony mycelia, turned white to gray later. The mycelia were hyaline and aseptate. Sporangiophores with 0.56 (0.22~1.10) mm in length and 6.1 (3.18~10.87) µm in width (n=100) were erect, light brown, and had rhizoids and stolons at their bases. Sporangia with 48.0 (23.45~92.85) µm in diameter (n=100) were dark-colored, near spherical and having dark ovoid sporangiospores with 3.56 (2.34~6.39) µm × 2.82 (1.73~4.70) µm (n=100). The morphology of the fungus were identical to Rhizopus stolonifer (Ehrenb.) Vuill (Haque et al. 2023). The two isolates were molecularly identified using genomic regions of 28S large ribosomal subunit (LSU) with NL1 and LR3 primers (Cruz-Lachica et al., 2018). The phylogenetic trees revealed the sequences of PRFJ01 (OR801560.1) and PRGX02 (OR801561.1) were 100% and 99% identical to R. stolonifer (MK705761.1 and KC412868.1), respectively. Pathogenicity tests were conducted on healthy flowers and leaves of 5-month-old grafted 'Qinmi No. 9' plants. Mycelial plugs with 5-mm diameter were placed on the flowers and leaves. Three plants were performed for each of the isolates, and the test was repeated twice. The inoculated plants were moisturized with plastic bags. Healthy flowers and leaves inoculated with sterile PDA plugs were used as control. Typical symptoms were observed on inoculated plants after 2 days. The dark grey mycelia and sporangia covered the entire flower after 4 days inoculation. The flower bud became putrid and the flower stalk split off. Lesions on leaves expanded accompany with numerous aerial mycelium. However, the controls were symptomless. R. stolonifer was reisolated from inoculated tissues. Previously, flower rot on passion fruit caused by R. stolonifer has only been recorded in Brazil (Ploetz, 2003). To our knowledge, this is the first report of R. stolonifer causing flower rot on passion fruit in China.

13.
Plant Dis ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254323

ABSTRACT

Lanzhou lily (Lilium davidii var. unicolor) is the only famous sweet lily variety that has high edible, medicinal and ornamental value in China, which is mostly planted in the middle areas of Gansu Province in China. In recent years, severe yellowing and wilting of leaves, stem wilt, root and bulb rot symptoms were observed on Lanzhou lily in Qilihe District, Lanzhou, which has resulted in serious loss of bulb production. From June to August 2022, a survey of Lanzhou lily disease was carried out in Xiguoyuan and Weiling township of Qilihe District, Lanzhou. Typical symptoms of root and bulb rot were observed in Lanzhou lily fields. The disease incidence was estimated up to 30%. Fragments of symptomatic roots and bulbs were surface sterilized with 75% ethanol for 10 s, 2% sodium hypochlorite for 2 min, washed three times with sterilized distilled water, and then blotted dry on sterile filter paper. Fragments were placed on PDA medium and incubated at 25 ± 1°C in darkness for 5 days and 2 isolates were purified by the single-tip culture. Colonies of the fungus were white initially, and then turned light brown to brown, raised, and with entire or undulate edges. Sclerotia were brown and produced on PDA after 25 days of incubation at 25 ± 1°C in the dark. Genomic DNA from each of the two isolates was extracted, and the internal transcribed spacer (ITS) region was amplified and sequenced with the primer pair ITS5/ITS4 (White et al. 1990). The sequences of strains QLH22LD01 and QLH22LD02 were deposited in GenBank (OR710804 and OR710805). Phylogenetic analyses were performed using the Maximum Likelihood method with ITS sequences for anastomosis groups (AG) of Rhizoctonia solani. The phylogenetic tree grouped the two isolates within the R. solani AG-6 clade with high bootstrap support (100%). PCR analysis was performed with 21 primers specifically designed to detect individual anastomosis groups or anastomosis subgroups of R. solani (Carling et al., 2002; Misawa and Kurose, 2019; Misawa et al., 2020; Okubara et al., 2008). Among the 21 specific primer pairs, only AG-6 specific primer amplified the fungal DNA, indicating that the two isolates tested belonged to the R. solani AG-6. Therefore, these two strains were identified as R. solani AG-6. For pathogenicity tests, two isolates were grown individually on sterile wheat kernels at 25 ± 1°C for 14 days. Certified pathogen-free Lanzhou lily bulbs were grown in the plastic pot filled with the sterilized soil. Fifteen 2- week-old plants were inoculated by digging the soil and burying ten infested wheat kernels in the soil adjacent to the roots. Control plants were inoculated with sterile wheat kernels using the same procedure. All plants were placed in a greenhouse with a 12h/12h light/dark photoperiod at 15 to 30°C. Fifty days after inoculation, typical root and bulb rot symptoms developed on all inoculated plants, similar to symptoms observed in the field, whereas control plants remained symptomless. Pathogenicity test was performed three times with similar to symptoms observed in the field. Finally, the fungi were reisolated from the symptomatic plants and identified by molecular analysis as the isolates used for inoculation, thus fulfilling Koch's postulates. To our knowledge, this is the first confirmed report of R. solani AG-6 causing root and bulb rot on Lanzhou lily in China. Our findings improve knowledge about R. solani AGs occurring in Lanzhou lily fields in China. Due to serious damages caused by this disease in recent years in China, further studies should be conducted to investigate the diversity, prevalence, disease control measures and fungicide sensitivity of AGs distributed in the main Lanzhou lily-producing states in China.

14.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279257

ABSTRACT

Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.


Subject(s)
Aptamers, Nucleotide , Communicable Diseases , Humans , SELEX Aptamer Technique , Gram-Negative Bacteria/genetics , Bacteria
15.
Plant Dis ; 108(3): 599-607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37682223

ABSTRACT

Walnut is cultivated around the world for its precious woody nut and edible oil. Recently, walnut infected by Colletotrichum spp. resulted in a great yield and quality loss. In August and September 2014, walnut fruits with anthracnose were sampled from two commercial orchards in Shaanxi and Liaoning provinces, and five representative isolates were used in this study. To identify the pathogen properly, four genes per region (internal transcribed spacer, glyceraldehyde-3-phosphate dehydrogenase, actin, and chitin synthase) were sequenced and used in phylogenetic studies. Based on multilocus phylogenetic analysis, five isolates clustered with Colletotrichum fioriniae, including its ex-type, with 100% bootstrap support. The results of multilocus phylogenetic analyses, morphology, and pathogenicity confirmed that C. fioriniae was one of the walnut anthracnose pathogens in China. All 13 fungicides tested inhibited mycelial growth and spore germination. Flusilazole, fluazinam, prochloraz, and pyraclostrobin showed the strongest suppressive effects on the mycelial growth than the others, the average EC50 values ranged from 0.09 to 0.40 µg/ml, and there was not any significant difference (P < 0.05). Pyraclostrobin, thiram, and azoxystrobin were the most effective fungicides on spore germination (P < 0.05), and the EC50 values ranged from 0.01 to 0.44 µg/ml. Pyraclostrobin, azoxystrobin, fluazinam, flusilazole, mancozeb, thiram, and prochloraz exhibited a good control effect on walnut anthracnose caused by C. fioriniae, and preventive activities were greater than curative activities. Pyraclostrobin at 250 a.i. µg/ml and fluazinam at 500 a.i. µg/ml provided the highest preventive and curative efficacy, and the values ranged from 81.3 to 82.2% and from 72.9 to 73.6%, respectively. As a consequence, mancozeb and thiram could be used at the preinfection stage, and pyraclostrobin, azoxystrobin, flusilazole, fluazinam, and prochloraz could be used at the early stage for effective prevention and control of walnut anthracnose caused by C. fioriniae. The results will provide more significant instructions for controlling the disease effectively in northern China.


Subject(s)
Aminopyridines , Fungicides, Industrial , Juglans , Maneb , Pyrimidines , Silanes , Strobilurins , Triazoles , Zineb , Fungicides, Industrial/pharmacology , Nuts , Thiram , Phylogeny , China
16.
J Obstet Gynaecol Res ; 50(3): 508-515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087434

ABSTRACT

OBJECTIVE: Listeriosis is caused by the bacterium, Listeria monocytogenes, and is a significant health concern because of high hospitalization and mortality rates. This study reports seven cases of pregnancy-associated listeriosis diagnosed with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry performed on infection-positive blood culture. METHODS: Blood culture-positive samples of seven patients whose pregnancy was complicated by Listeria infection and treated at Xuanwu Hospital of Capital Medical University between January 2016 and December 2021 were analyzed retrospectively. Strains identified by MALDI-TOF mass spectrometry were compared with colony identification results. Identification accuracy and consistency were assessed. RESULTS: A total of seven strains of Listeria were collected from seven pregnant women presented with fever (37.6-39.9°C). Clinical abnormalities included abnormal liver function, emaciation, hypoalbuminemia, hypocalcemia, hypokalemia, hyponatremia, ketosis, mild to moderate anemia, leukopenia, and thrombocytopenia. Compared with the traditional culture method, MALDI-TOF mass spectrometry led to much earlier identification (4-6 h vs. 3-4 days) with 100% identification accuracy. Of the seven pregnancies complicated by Listeria, only two led to live births. Of the five fetal deaths, three occurred in the second trimester. CONCLUSION: In this series of pregnancy-associated listeriosis cases, the fetal mortality rate was 71%. MALDI-TOF mass spectrometry is a valuable method that can identify Listeria from blood culture rapidly and accurately.


Subject(s)
Clinical Relevance , Listeriosis , Pregnancy , Humans , Female , Retrospective Studies , Listeriosis/diagnosis , Mass Spectrometry , Fever
17.
Pediatr Investig ; 7(4): 277-289, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38050541

ABSTRACT

Severe sepsis causes organ dysfunction and continues to be the leading reason for pediatric death worldwide. Early recognition of sepsis could substantially promote precision treatment and reduce the risk of pediatric death. The host cellular response to infection during sepsis between adults and pediatrics could be significantly different. A growing body of studies focused on finding markers in pediatric sepsis in recent years using multi-omics approaches. This narrative review summarized the progress in studying pediatric sepsis biomarkers from genome, transcript, protein, and metabolite levels according to the omics technique that has been applied for biomarker screening. It is most likely not a single biomarker could work for precision diagnosis of sepsis, but a panel of markers and probably a combination of markers detected at multi-levels. Importantly, we emphasize the importance of group distinction of infectious agents in sepsis patients for biomarker identification, because the host response to infection of bacteria, virus, or fungus could be substantially different and thus the results of biomarker screening. Further studies on the investigation of sepsis biomarkers that were caused by a specific group of infectious agents should be encouraged in the future, which will better improve the clinical execution of personalized medicine for pediatric sepsis.

18.
Cureus ; 15(11): e49366, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38146579

ABSTRACT

The diagnosis is an important factor in healthcare care, and it is essential to identify microorganisms that cause infections and diseases. The application of artificial intelligence (AI) systems can improve disease management, drug development, antibiotic resistance prediction, and epidemiological monitoring in the field of microbial diagnosis. AI systems can quickly and accurately detect infections, including new and drug-resistant strains, and enable early detection of antibiotic resistance and improved diagnostic techniques. The application of AI in bacterial diagnosis focuses on the speed, precision, and identification of pathogens and the ability to predict antibiotic resistance.

19.
Diagnostics (Basel) ; 13(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37958231

ABSTRACT

We analyzed the accuracy and time efficiency of the FilmArray blood culture identification (FA-BCID) panel in identifying the pathogens in positive blood cultures. Two-hundred and seventy-two individuals were randomly assigned as the control (n = 212) and FA-BCID (n = 60) groups participating in this study. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to assess the control group. Meanwhile, the FA-BCID group was evaluated using both FA-BCID and MALDI-TOF, and the results were compared. The identification results from 73% (44/60) of the blood samples demonstrated agreement between FA-BCID and MALDI-TOF. The FA-BCID panel detected mecA genes in seven Staphylococcus species; six cases were confirmed using antimicrobial susceptibility testing. In addition, KPC genes were detected in one Escherichia coli and one Klebsiella pneumoniae, although only the latter corresponded with the result from antimicrobial susceptibility testing. The turnaround time (TAT) for identification through FA-BCID was shorter, with a median of 3.6 [2.4-4.6] hours (p < 0.05). No significant differences in the clinical and microbial outcomes following the ASP were observed between FA-BCID and MALDI-TOF. These results suggest that the FA-BCID panel provides an identification result that is as reliable as that provided by the routine identification procedure but with shorter TAT; thus, the FA-BCID method is considered an effective and beneficial method for therapeutic decision making and the improvement of the ASP for patients with bloodstream infection.

20.
Cureus ; 15(9): e45738, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37872929

ABSTRACT

Diagnostic microbiology plays a vital role in managing infectious diseases, combating antimicrobial resistance, and containment of outbreaks. During the fourth industrial revolution, when artificial intelligence (AI) became an essential part of our day-to-day lives, its integration into healthcare would further revolutionize our knowledge and potential. Although in the budding stage, AI with machine learning is being increasingly utilized in various aspects of diagnostic microbiology. It can handle large datasets that are difficult to analyze manually. Researchers have developed and demonstrated several machine-learning algorithms for interpreting bacterial cultures, conducting image analysis for microbial detection, and predicting antimicrobial susceptibility patterns. Thus, AI may most likely be the ultimate solution to the ever-increasing demand for improved results with shorter turnaround times. AI can also assist forensic microbiologists in crime scene investigations, as it can guide individual identification, cause and time since death, and manner of death. This review summarizes the application of AI in diagnostic microbiology for performing diverse sets of microbial investigations and is an essential aid in forensic microbiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...