ABSTRACT
We report the draft genome sequence of Raoultella terrigena strain Ech2A causing soft rot on pepper. To verify pathogenicity, Koch's postulates were performed on sweet pepper. Genes encoding pectinolytic enzymes were found in the genome.
ABSTRACT
A sequential design strategy was applied to optimize the secretion of pectinases by a Saccharomyces cerevisiae strain, from Brazilian sugarcane liquor vat, on passion fruit residue flour (PFRF), through solid-state fermentation (SSF). A factorial design was performed to determine the influence variables and two rotational central composite designs were executed. The validated experimental result was of 7.1 U mL-1 using 50% PFRF (w/w), pH 5, 30 °C for 24 h, under static SSF. Polygalacturonase, pectin methyl esterase, pectin-lyase and pectate-lyase activities were 3.5; 0.08; 3.1 and 0.8 U mL-1, respectively. Shotgun proteomics analysis of the crude extract enabled the identification of two pectin-lyases, one pectate-lyase and a glucosidase. The crude enzymatic extract maintained at least 80% of its original activity at pH values and temperatures ranging from 2 to 8 and 30 to 80 °C, respectively, over 60 min incubation. Results revealed that PFRF might be a cost-effective and eco-friendly substrate to produce pectinases. Statistical optimization led to fermentation conditions wherein pectin active proteins predominated. To the extent of our knowledge, this is the first study reporting the synthesis of pectate lyase by S. cerevisiae.
Subject(s)
Polygalacturonase , Saccharomyces cerevisiae , Fermentation , Hydrogen-Ion Concentration , Pectins/metabolism , Polygalacturonase/metabolism , Proteomics , Saccharomyces cerevisiae/metabolismABSTRACT
AIM: To identify and analyse genes that encode pectinases in the genome of the fungus Colletotrichum lindemuthianum, evaluate the expression of these genes, and compare putative pectinases found in C. lindemuthianum with pectinases produced by other fungi and oomycetes with different lifestyles. METHODS AND RESULTS: Genes encoding pectinases in the genome of C. lindemuthianum were identified and analysed. The expression of these genes was analysed. Pectinases from C. lindemuthianum were compared with pectinases from other fungi that have different lifestyles, and the pectinase activity in some of these fungi was quantified. Fifty-eight genes encoding pectinases were identified in C. lindemuthianum. At least six types of enzymes involved in pectin degradation were identified, with pectate lyases and polygalacturonases being the most abundant. Twenty-seven genes encoding pectinases were differentially expressed at some point in C. lindemuthianum during their interactions with their host. For each type of pectinase, there were at least three isoenzyme groups. The number of pectinases present in fungi with different lifestyles seemed to be related more to the lifestyle than to the taxonomic relationship between them. Only phytopathogenic fungi showed pectate lyase activity. CONCLUSIONS: The collective results demonstrate the pectinolytic arsenal of C. lindemuthianum, with many and diverse genes encoding pectinases more than that found in other phytopathogens, which suggests that at least part of these pectinases must be important for the pathogenicity of the fungus C. lindemuthianum. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of these pectinases could further the understanding of the importance of this broad pectinolytic arsenal in the common bean infection and could be exploited for biotechnological purposes.
Subject(s)
Colletotrichum , Fabaceae , Colletotrichum/genetics , Fabaceae/microbiology , Fungi/metabolism , Polygalacturonase/genetics , Polygalacturonase/metabolismABSTRACT
During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great potential for use as starter cultures in wet processing of coffee and may possibly help to control and standardize the fermentation process and produce coffee beverages with novel and desirable flavor profiles.
Subject(s)
Coffee/metabolism , Coffee/microbiology , Fermentation , Yeasts/isolation & purification , Yeasts/metabolism , Beverages/standards , DNA, Ribosomal Spacer/genetics , Fruit/metabolism , Fruit/microbiology , Humans , Microbial Viability , Molecular Sequence Data , Odorants/analysis , Polygalacturonase/metabolism , RNA, Ribosomal , Stress, Physiological , Taste , Yeasts/enzymologyABSTRACT
Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase.
Avaliou-se o crescimento e a produção de enzimas por Aspergillus flavipes FP-500 em pectina, ácido poligalacturônico, ácido galacturônico, arabinose, ramnose, xilose, glicerol e glicose, em diferentes valores de pH inicial. Verificamos que a cepa produziu exopectinases, endopectinases e pectina liases. Exopectinases e pectina liases foram produzidas em níveis basais como enzimas constitutivas e sua produção foi modulada pela fonte de carbono disponível e pelo pH do meio de cultura e estimulada pela presença de indutores no meio de cultura. Endopectinase foi indutível e produzida somente quando pectina foi utilizada como fonte de carbono. Nossos resultados sugerem que as pectinases de A. flavipes FP-500 são produzidas de forma planejada. A primeira enzima a ser produzida foi expopectinase, seguida por pectina liase e endopectinase.
Subject(s)
Aspergillus flavus/growth & development , Aspergillus flavus/enzymology , Pectins/analysis , Polygalacturonase/analysis , Methods , MethodsABSTRACT
Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase.
ABSTRACT
Growth and enzymes production by Aspergillus flavipes FP-500 were evaluated on pectin, polygalacturonic acid, galacturonic acid, arabinose, rhamnose, xylose, glycerol and glucose at different initial pH values. We found that the strain produced exopectinases, endopectinases and pectin lyases. Exopectinases and pectin lyase were found to be produced at basal levels as constitutive enzymes and their production was modulated by the available carbon source and pH of culture medium and stimulated by the presence of inducer in the culture medium. Endo-pectinase was basically inducible and was only produced when pectin was used as carbon source. Our results suggest that pectinases in A. flavipes FP-500 are produced in a concerted way. The first enzyme to be produced was exopectinase followed by Pectin Lyase and Endo-pectinase.
Avaliou-se o crescimento e a produção de enzimas por Aspergillus flavipes FP-500 em pectina, ácido poligalacturônico, ácido galacturônico, arabinose, ramnose, xilose, glicerol e glicose, em diferentes valores de pH inicial. Verificamos que a cepa produziu exopectinases, endopectinases e pectina liases. Exopectinases e pectina liases foram produzidas em níveis basais como enzimas constitutivas e sua produção foi modulada pela fonte de carbono disponível e pelo pH do meio de cultura e estimulada pela presença de indutores no meio de cultura. Endopectinase foi indutível e produzida somente quando pectina foi utilizada como fonte de carbono. Nossos resultados sugerem que as pectinases de A. flavipes FP-500 são produzidas de forma planejada. A primeira enzima a ser produzida foi expopectinase, seguida por pectina liase e endopectinase.