Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38794159

ABSTRACT

Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.

2.
Front Pharmacol ; 15: 1293458, 2024.
Article in English | MEDLINE | ID: mdl-38482056

ABSTRACT

Staphylococcus aureus (S. aureus) is a commensal bacterium and an opportunistic pathogen causing a wide variety of infections ranging from localized skin and soft tissue infections to life-threatening severe bacteremia, osteomyelitis, endocarditis, atopic dermatitis, prosthetic joint infection, staphylococcal food poisoning, medical device-related infections, and pneumonia. It is attributed to an acquired resistant gene, mecA, encoding penicillin-binding protein 2a (PBP2a). PBP2a is an essential protein responsible for the resistivity of methicillin-resistant S. aureus (MRSA) to various beta-lactam antibiotics. The antimicrobial treatment alternatives for MRSA are increasingly limited. Therefore, developing alternative therapeutic options for its treatment is the need of the day. Phthalimides and their N-substituted derivatives are of biological importance as they possess extensive biological and pharmaceutical properties and can serve as an excellent therapeutic option for MRSA. This study uses three chiral phthalimides (FIA, FIB, and FIC) to check their in silico and in vitro inhibitory effects. Molecular docking of these chiral phthalimides against PBP2a of MRSA was performed initially. After promising results, these novel compounds were screened through the agar-well diffusion method and micro-broth dilution assay to investigate their in vitro inhibitory activities with FIB being the strongest anti-staphylococcal agent yielding a 21 mm zone of inhibition and a minimum inhibitory concentration (MIC) of 0.022 ug, respectively. The zones of inhibition obtained through the in vitro activity showed that these chiral phthalimides possess substantial anti-MRSA activities and have the potential to be considered as alternative chemotherapeutics to treat the infections caused by MRSA after the confirmation of their cytotoxic and pharmacokinetic studies.

3.
J Biomol Struct Dyn ; : 1-13, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497736

ABSTRACT

The production of penicillin-binding protein 2a (PBP2a), a cell wall synthesis protein, is primarily responsible for the high-level resistance observed in methicillin-resistant Staphylococcus aureus (MRSA). PBP2a exhibits a significantly reduced affinity for most ß-lactam antibiotics owing to its tightly closed active site. Quinazolinones (QNE), a novel class of non-ß-lactam antibiotics, could initiate the allosteric regulation of PBP2a, resulting in the opening of the initially closed active pocket. Based on our previous study, we have a basic understanding of the dual-site inhibitor ceftaroline (CFT) induced allosteric regulation of PBP2a. However, there are still limitations in the knowledge of how combining medicines, QNE and piperacillin (PIP), induce the allosteric response of PBP2a and inhibit its function. Herein, molecular dynamics (MD) simulations were performed to elucidate the intricate mechanisms underlying the combination mode of QNE and PIP. Our study successfully captured the opening process of the active pocket upon the binding of the QNE at the allosteric site, which alters the signaling pathways with a favorable transmission to the active site. Subsequent docking experiments with different conformational states of the active pocket indicated that all three inhibitors, PIP, QNE, and CFT, exhibited higher docking scores and more favorable docking poses to the open active pocket. These findings reveal the implied mechanism of QNE-mediated allostery underlying combination therapy and provide novel insights into developing innovative therapeutic modalities against MRSA.Communicated by Ramaswamy H. Sarma.

4.
Bioelectrochemistry ; 157: 108674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460467

ABSTRACT

Early monitoring of MRSA can effectively mitigate the disease risk by using Penicillin-binding protein 2a (PbP2a) biomarker. Diamino naphthalene-AuNPs decorated graphene (AuNPsGO-DN) nanocomposite was synthesized for a rapid and sensitive immunosensor detecting PbP2a. The synthesized AuNPsGO-DN nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). Electrochemical characterization done with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrical impedance spectroscopy (EIS) techniques. Anti-PbP2a monoclonal antibodies immobilized at AuNPsGO-DN/GCE via covalent bonding. AuNPs enhanced the electrode surface area and the antibodies' loading. Mercaptopropionic acid (MPA) was a linker between the AuNPs and antibodies, orientated the antibodies as opposite to the PbP2a antigen, and improved the sensitivity and specificity. The antiPbP2a/MPA/AuNPsGO-DN/GCE electrode displayed sensitive and selective detection towards the PbP2a antigen in phosphate buffer saline (PBS pH 7.4). The broad linear range from 0.01 to 8000 pg/mL was obtained with LOD of 0.154 pg/mL and 0.0239 pg/mL, respectively. A label-free, simple, and sensitive immunosensor was developed with a 98-106 % recovery rate in spiked biological samples. It shows the potential applicability of the developed immunoelectrode.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanocomposites , Graphite/chemistry , Gold/chemistry , Electrochemical Techniques/methods , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Immunoassay , Antibodies , Nanocomposites/chemistry , Limit of Detection
5.
Antimicrob Agents Chemother ; 67(12): e0089523, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37971241

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) acquires high-level resistance against ß-lactam antibiotics by expressing penicillin-binding protein 2a (PBP2a). PBP2a is a cell wall-synthesizing protein whose closed active site exhibits a reduced binding affinity toward ß-lactam antibiotics. Ceftaroline (CFT), a fifth-generation cephalosporin, can effectively inhibit the PBP2a activity by binding to an allosteric site to trigger the active site opening, allowing a second CFT to access the active site. However, the essential mechanism behind the allosteric behavior of PBP2a remains unclear. Herein, computational simulations are employed to elucidate how CFT allosterically regulates the conformation and dynamics of the active site of PBP2a. While CFT stabilizes the allosteric domain surrounding it, it simultaneously enhances the dynamics of the catalytic domain. Specifically, the study successfully captured the opening process of the active pocket in the allosteric CFT-bound systems and discovered that CFT alters the potential signal-propagating pathways from the allosteric site to the active site. These findings reveal the implied mechanism of the CFT-mediated allostery in PBP2a and provide new insights into dual-site drug design or combination therapy against MRSA targeting PBP2a.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Penicillin-Binding Proteins , Allosteric Regulation , Bacterial Proteins/metabolism , Microbial Sensitivity Tests
6.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894491

ABSTRACT

Staphylococcus aureus is a common human pathogen. Methicillin-resistant Staphylococcus aureus (MRSA) infections pose significant and challenging therapeutic difficulties. MRSA often acquires the non-native gene PBP2a, which results in reduced susceptibility to ß-lactam antibiotics, thus conferring resistance. PBP2a has a lower affinity for methicillin, allowing bacteria to maintain peptidoglycan biosynthesis, a core component of the bacterial cell wall. Consequently, even in the presence of methicillin or other antibiotics, bacteria can develop resistance. Due to genes responsible for resistance, S. aureus becomes MRSA. The fundamental premise of this resistance mechanism is well-understood. Given the therapeutic concerns posed by resistant microorganisms, there is a legitimate demand for novel antibiotics. This review primarily focuses on PBP2a scaffolds and the various screening approaches used to identify PBP2a inhibitors. The following classes of compounds and their biological activities are discussed: Penicillin, Cephalosporins, Pyrazole-Benzimidazole-based derivatives, Oxadiazole-containing derivatives, non-ß-lactam allosteric inhibitors, 4-(3H)-Quinazolinones, Pyrrolylated chalcone, Bis-2-Oxoazetidinyl macrocycles (ß-lactam antibiotics with 1,3-Bridges), Macrocycle-embedded ß-lactams as novel inhibitors, Pyridine-Coupled Pyrimidinones, novel Naphthalimide corbelled aminothiazoximes, non-covalent inhibitors, Investigational-ß-lactam antibiotics, Carbapenem, novel Benzoxazole derivatives, Pyrazolylpyridine analogues, and other miscellaneous classes of scaffolds for PBP2a. Additionally, we discuss the penicillin-binding protein, a crucial target in the MRSA cell wall. Various aspects of PBP2a, bacterial cell walls, peptidoglycans, different crystal structures of PBP2a, synthetic routes for PBP2a inhibitors, and future perspectives on MRSA inhibitors are also explored.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Humans , Penicillin-Binding Proteins/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin/metabolism , Methicillin/pharmacology , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Monobactams/metabolism , Bacterial Proteins/chemistry , Microbial Sensitivity Tests
7.
Open Life Sci ; 18(1): 20220718, 2023.
Article in English | MEDLINE | ID: mdl-37772260

ABSTRACT

It is essential to revisit the global biodiversity, search for ethnopharmacologically relevant plants, and unveil their untapped potential to overcome the complications associated while treating infections triggered by multiple antibiotic-resistant Staphylococcus aureus. Catharanthus roseus (L.) G. Don of the Apocynaceae family is a medicinal plant used for remedial purposes against infectious diseases from ancient times. In this study, we intended to evaluate the mechanism by which the ethanolic extract of C. roseus root (EECRR) causes the reversal of ampicillin resistance in S. aureus. To achieve this goal, we have stained EECRR-treated S. aureus with acridine orange, analysed DNA damage by comet assay, and studied the alteration of plasmid band pattern and expression of penicillin-binding protein 2a (PBP2a) protein. Experiments revealed better S. aureus killing efficiency of EECRR at its minimum inhibitory concentration (MIC) doses due to DNA damage and reducing plasmid band intensities along with a decline in the expression of PBP2a in EECRR-treated cells at half-MIC dose. EECRR proved to be an efficient growth inhibitor of S. aureus that reduces the expression of PBP2a. Therefore, EECRR can also render ampicillin-resistant S. aureus susceptible to the antibiotic.

8.
Antimicrob Agents Chemother ; 66(6): e0025222, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35575577

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a leading cause of many invasive clinical syndromes, and pose treatment difficulties due to their in vitro resistance to most ß-lactams on standard laboratory testing. A novel phenotype frequently identified in MRSA strains, termed 'NaHCO3-responsiveness', is a property whereby strains are susceptible in vitro to many ß-lactams in the presence of NaHCO3. Specific mecA genotypes, repression of mecA/PBP2a expression and perturbed maturation of PBP2a by NaHCO3 have all been associated with this phenotype. The aim of this study was to define the relationship between specific mecA genotypes and PBP2a substitutions, on the one hand, with NaHCO3-responsiveness in vitro. Mutations were made in the mecA ribosomal binding site (RBS -7) and at amino acid position 246 of its coding region in parental strains MW2 (NaHCO3-responsive) and C36 (NaHCO3- nonresponsive) to generate 'swap' variants, each harboring the other's mecA-RBS/coding region genotypes. Successful swaps were confirmed by both sequencing, as well as predicted swap of in vitro penicillin-clavulanate susceptibility phenotypes. MW2 swap variants harboring the nonresponsive mecA genotypes became NaHCO3-nonresponsive (resistant to the ß-lactam, oxacillin [OXA]), in the presence of NaHCO3. Moreover, these swap variants had lost NaHCO3-mediated repression of mecA/PBP2a expression. In contrast, C36 swap variants harboring the NaHCO3-responsive mecA genotypes remained NaHCO3-nonresponsive phenotypically, and still exhibited nonrepressible mecA/PBP2a expression. These data demonstrate that in addition to the mecA genotype, NaHCO3-responsiveness may also depend on strain-specific genetic backgrounds.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Genotype , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Oxacillin , Penicillin-Binding Proteins/genetics , Phenotype , Sodium Bicarbonate , beta-Lactams
9.
BioTechnologia (Pozn) ; 103(1): 5-18, 2022.
Article in English | MEDLINE | ID: mdl-36605380

ABSTRACT

Background: MRSA and MLSB resistant S. aureus are known as important pathogens, which are responsible for many cases of both hospital and community-acquired infections worldwide. Studying drug discovery from plant sources is regarded as an important prevention strategy regarding these types of infections. Material and methods: Agar well diffusion method was performed for antimicrobial evaluation, LCMS technique used for identification of different compounds, molecular docking performed by application of i GEMDOCK for PBP2a and ERM to plant compounds, and its pharmacokinetic evaluation of ADMET through use of AdmetSAR. Results: Water extract was the most effective against resistant strains of Staphylococcus aureus. Twenty compounds belonging to phenols, flavonoids, organic acids, terpenoids groups were reported. Eighteen plant compounds passed in Lipinski's rule of five. i GEMDOCK revealed diferulic acid has the least binding energy -102.37 kcal/mole to penicillin-binding protein 2a and taxifolin has the least binding energy of -103.12 kcal/mole to erythromycin ribosomal methylase in comparison to control linezolid. These compounds raise the potential for developing potent inhibitors of penicillin-binding protein 2a and erythromycin ribosomal methylase for drug development. ADMET properties revealed that eighteen studied compounds were found in category III and IV with non-toxic properties except two butin and taxifolin found in category II with toxic properties. Conclusions: It can be concluded that diferulic acid and taxifolin compounds provide the best inhibitor effect to PBP2a and ERM protein for inhibition of MRSA and MLSB resistant strains of S. aureus through the application of molecular docking, leading to a lead drug candidate for the treatment of diseases.

10.
J Biomol Struct Dyn ; 40(21): 10561-10577, 2022.
Article in English | MEDLINE | ID: mdl-34243699

ABSTRACT

Methicillin-Resistant Staphylococcus aureus (MRSA), a pathogenic bacterium that causes life-threatening outbreaks such as community-onset and nosocomial infections as emerging 'superbug'. Time and motion study of its virulent property developed resistance against most of the antibiotics such as Vancomycin. Thereby, to curb this problem entails the development of new therapeutic agents. Plant-derived antimicrobial agents have recently piqued people's interest, so in this research, 186 flavonoids compound selected to unmask the best candidates that can act as potent inhibitors against the Penicillin Binding Protein-2a (PBP-2a) of MRSA. Molecular docking performed using PyRx and GOLD suite to determine the binding affinities and interactions between the phytochemicals and the PBP-2a. The selected candidates strongly interact with the different amino acid residues. The 30 ns molecular dynamics (MD) simulations with five top-ranked compounds such as Naringin, Hesperidin, Neohesperidin, Didymin and Icariin validated the docking interactions. These findings are also strongly supported by root-mean-square deviation, root-mean-square fluctuation and the radius of gyration. ADME/T analysis demonstrates that these candidates appear to be safer inhibitors. Our findings point to natural flavonoids as a promising and readily available source of adjuvant antimicrobial therapy against resistant strains in the future.Communicated by Ramaswamy H. Sarma.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Flavonoids/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Penicillin-Binding Proteins/chemistry
11.
Front Vet Sci ; 8: 740934, 2021.
Article in English | MEDLINE | ID: mdl-34917668

ABSTRACT

The indiscriminate use of first-line drugs contributed to the spread of resistant bacteria, a major concern for both human and veterinary medicine. Methicillin resistance is acquired through the mecA gene, which encodes for the PBP2a protein and lends the resistance to ß-lactams. Verifying the correspondence between gene harboring and protein expression and accelerating methicillin resistance diagnosis is critical to improve the management of antimicrobial administration and to reduce the spread of drug resistances. We tested the applicability of immunofluorescence targeting PBP2a protein to identify a new potential methicillin resistance screening test, ancillary to conventional culture methods. We collected 26 clinical Staphylococcus pseudintermedius (SP) isolates: 25 from canine pyoderma and 1 from dermatitis in a dog owner. SP is one of the most important etiological agents in canine pyoderma and can harbor the mecA gene. We performed PCR for mecA gene detection, broth microdilution (BMD) for phenotypic methicillin resistance, and immunofluorescence targeting PBP2a protein. Compared to the PCR as the gold standard, immunofluorescence showed an apparent prevalence of 34.6% vs. a true prevalence of 53.8%, with 100% specificity, 64.3% sensitivity, and 80.8% diagnostic accuracy. PBP2a expression showed isolate-dependent variability: in some isolates, most of the bacterial cells showed an intense and clearly membranous pattern, while in others only a few of them could be detected. Performing the assay in duplicate improved the diagnostic accuracy. Since the mecA gene is shared among the members of the Staphylococcus genus, the test can be applied to identify methicillin resistance independently from the staphylococcal species, both in human and animal samples. Being a rapid and easy method and providing the unique possibility to study the expression of PBP2a by directly visualizing the morphology, it could represent a new interesting tool for both research and diagnostics. To accelerate methicillin resistance diagnosis, it would be worth further testing of its performance on cytological samples.

12.
Iran J Microbiol ; 13(4): 442-448, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34557271

ABSTRACT

BACKGROUND AND OBJECTIVES: Ceftaroline (CPT) is a novel cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Despite its recent introduction, CPT resistance in MRSA has been described worldwide. We aimed in the current study to evaluate the in vitro activity of CPT against 91 clinical MRSA and 3 MSSA isolates. MATERIALS AND METHODS: Susceptibility of isolates to CPT was tested using E-test and disk diffusion (DD) method. The nucleotide sequence of the mecA gene and molecular types of isolates with reduced susceptibility to CPT were further studied to identify resistance conferring mutations in PBP2a and the genetic relatedness of the isolates respectively. RESULTS: Overall, 92.5% of isolates were found to be CPT susceptible (MICs≤1mg/l) and 7 MRSA isolates were characterized with MIC=2mg/l and categorized as susceptible dose dependent. Compared to E-test, DD revealed a categorical agreement rate of 93.6% and the obtained rates for minor, major /very major error were found to be 6.3% and 0% respectively. The MRSA isolates with increased CPT MICs (n=7), belonged to spa types t030 (n=6) and t13927 (n=1) and all carried N146K substitution in PBP2a allosteric domain, except for one isolate which harbored a wild-type PBP2a. CONCLUSION: While resistance to CPT was not detected we found increased CPT MICs in 7.69% of MRSA isolates. Reduced susceptibility to CPT in the absence of mecA mutations is indicative of contribution of secondary chromosomal mutations in resistance development.

13.
Lett Appl Microbiol ; 72(3): 238-244, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33064844

ABSTRACT

The present study evaluated the antibacterial activity and the synergy of the sanguisorbigenin (SGB) from the dried root of Sanguisorba officinalis L. combined with ß-lactam antibiotics against methicillin-resistant Staphylococcus aureus. A total of six strains of reference strain and clinical isolates were used to determine the antibacterial activity using a broth microdilution assay, and the synergistic effects were determined using a checkerboard assay. To analyse the mechanism of synergy, we conducted the level of penicillin-binding protein 2a by western blot. In addition, quantitative RT-PCR was performed to analyse the mecA gene expression. The minimal inhibitory concentration values of SGB against six strains of S. aureus were in the range of 12·5-50 µg ml-1 , and there were synergy, or partial synergy effects when SGB was combined with antibiotics. Furthermore, when treated with SGB, the level of penicillin-binding protein 2a and the expression of the mecA gene was reduced significantly. In conclusion, this study demonstrated that SGB is a potential natural antibacterial agent against methicillin-resistant S. aureus that represents a considerable burden on the healthcare system worldwide, and may an exceptionally modulator of ß-lactam antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Preparations/pharmacology , Bacterial Proteins/metabolism , Humans , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism , Plant Roots/chemistry , Sanguisorba/chemistry
14.
Lett Appl Microbiol ; 72(6): 669-676, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32955753

ABSTRACT

Acanthopanax (A.) henryi (Oliv.) Harms contain many bioactive compounds commonly used in traditional Chinese medicine. The objective of the present study was to investigate the antibacterial activity of the single constituent, Eleutheroside K (ETSK) isolated from the leaves of A. henryi (Oliv.) Harms, against methicillin-resistant Staphylococcus (S.) aureus (MRSA). Broth microdilution assay was used to measure the minimal inhibitory concentration (MIC) and the MIC values of ETSK against eight clinical S. aureus strains were all 50 µg ml-1 . At sub-inhibitory concentrations, a synergistic effect between oxacillin (OXA) and ETSK was confirmed using checkerboard dilution assay and time-kill curve analysis. The bacteriostatic effect became more pronounced when ETSK was used in combination with detergent (Triton X-100) or ATPase inhibitor (N, N'-dicyclohexylcarbodiimide). According to western blot analysis, the down-regulated expression of Penicillin-binding protein 2a (PBP2a) further validated that the bacterial activity was inhibited when treated with ETSK in a dose-dependent manner. Results based on our study verified that ETSK significantly suppressed MRSA infections and emphasized the potential application of ETSK as a novel anti-MRSA natural drug.


Subject(s)
Anti-Bacterial Agents/pharmacology , Eleutherococcus/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxacillin/pharmacology , Plant Extracts/pharmacology , Dicyclohexylcarbodiimide/pharmacology , Down-Regulation/drug effects , Drug Synergism , Drug Therapy, Combination , Eleutherococcus/chemistry , Methicillin Resistance/drug effects , Microbial Sensitivity Tests , Octoxynol/pharmacology , Penicillin-Binding Proteins/biosynthesis , Plant Leaves/chemistry
15.
Eur J Med Chem ; 199: 112312, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32442851

ABSTRACT

Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most ß-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Penicillin-Binding Proteins/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Chemistry, Pharmaceutical , Enzyme Inhibitors/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism
16.
Appl Environ Microbiol ; 85(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31375493

ABSTRACT

Macrococcus caseolyticus belongs to the normal bacterial flora of dairy cows and does not usually cause disease. However, methicillin-resistant M. caseolyticus strains were isolated from bovine mastitis milk. These bacteria had acquired a chromosomal island (McRI mecD -1 or McRI mecD -2) carrying the methicillin resistance gene mecD To gain insight into the distribution of McRI mecD types in M. caseolyticus from cattle, 33 mecD-containing strains from Switzerland were characterized using molecular techniques, including multilocus sequence typing, antibiotic resistance gene identification, and PCR-based McRI mecD typing. In addition, the same genetic features were analyzed in 27 mecD-containing M. caseolyticus strains isolated from bovine bulk milk in England/Wales using publicly available whole-genome sequences. The 60 strains belonged to 24 different sequence types (STs), with strains belonging to ST5, ST6, ST21, and ST26 observed in both Switzerland and England/Wales. McRI mecD -1 was found in different STs from Switzerland (n = 19) and England/Wales (n = 4). McRI mecD -2 was only found in 7 strains from Switzerland, all of which belonged to ST6. A novel island, McRI mecD -3, which contains a complete mecD operon (mecD-mecR1m-mecIm [where the subscript m indicates Macrococcus]) combined with the left part of McRI mecD -2 and the right part of McRI mecD -1, was found in heterogeneous STs from both collections (Switzerland, n = 7; England/Wales, n = 21). Two strains from England/Wales carried a truncated McRI mecD -3. Phylogenetic analyses revealed no clustering of strains according to geographical origin or carriage of McRI mecD -1 and McRI mecD -3. Circular excisions were also detected for McRI mecD -1 and McRI mecD -3 by PCR. The analyses indicate that these islands are mobile and may spread by horizontal gene transfer between genetically diverse M. caseolyticus strains.IMPORTANCE Since its first description in 2017, the methicillin resistance gene mecD has been detected in M. caseolyticus strains from different cattle sources and countries. Our study provides new insights into the molecular diversity of mecD-carrying M. caseolyticus strains by using two approaches to characterize mecD elements: (i) multiplex PCR for molecular typing of McRI mecD and (ii) read mapping against reference sequences to identify McRI mecD types in silico In combination with multilocus sequence typing, this approach can be used for molecular characterization and surveillance of M. caseolyticus carrying mecD.


Subject(s)
Genetic Variation , Genomic Islands , Methicillin Resistance/genetics , Staphylococcaceae/drug effects , Staphylococcaceae/genetics , Animals , Bacterial Typing Techniques , Cattle , Chromosomes, Bacterial/genetics , England , Female , Genes, Bacterial , Microbial Sensitivity Tests , Milk/microbiology , Multilocus Sequence Typing , Phylogeny , Wales
17.
Evol Bioinform Online ; 15: 1176934319864945, 2019.
Article in English | MEDLINE | ID: mdl-31360059

ABSTRACT

Whole genome sequencing of methicillin-resistant Staphylococcus aureus (MRSA) strain isolated from Sudan has led to a great deal of information, which allows the identification and characterization of some pivotal proteins. The objective of this study was to investigate the penicillin-binding proteins, PBP and PBP2a, of SO-1977 strain to have insights about their physicochemical properties and to assess and describe the interaction of some phytochemicals against them in silico. PBP and PBP2a from MRSA's Sudan strain were found to be of great resemblance with some other strains. G246E single-nucleotide polymorphism was reported and identified in the allosteric binding site positioned in the non-penicillin-binding domain. The docked compounds demonstrated good binding energies and hydrogen bond interactions with residue Ser404 which plays crucial roles in ß-lactam activity. This finding would contribute significantly to designing effective ß-lactam drugs, to combat and treat ß-lactam-resistant bacteria in the future.

18.
Bioorg Med Chem ; 27(12): 2676-2688, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31103406

ABSTRACT

Type or The emergence of resistance to antibiotic has developed a complicated situation in the treatment of bacterial infections. Considering the antimicrobial resistance phenomenon as one of the greatest challenge of medicinal chemists for search of better anti-bacterial agents, which have potential narrow spectrum activity with low development of resistance potential and low toxicity to host. Cross-linking of peptidoglycan is a key step catalyze by Penicillin binding protein (PBP) to maintain integrity of cell wall in bacterial cell. However, these Penicillin binding protein (PBP) has developed resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to acquisition of additional PBP2a. Various Quinazolinone analogues are reported in literature as potential anti-bacterial agents against MRSA. In present study new quinazolinone analogues has been designed, guided by molecular docking, In-silico and MM-GBSA study. Newly designed molecules have been synthesized by medicinal chemistry route and their characterization was done by using IR, NMR, & HR-MS techniques. Biological evaluation of synthesized compounds has been done on wild type Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) and resistant MRSA bacterial strains using Streptomycin, Kanamycin and Linezolid as standard drugs respectively. The in vitro evaluation results have shown that compound 5f is active with MIC value 15.625 µg/mL against S. aureus and with MIC value 31.25 µg/mL against MRSA.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Drug Design , Quinazolinones/chemistry , Allosteric Site , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Catalytic Domain , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Linezolid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Quinazolinones/metabolism , Quinazolinones/pharmacology , Structure-Activity Relationship
19.
Article in English | MEDLINE | ID: mdl-29941637

ABSTRACT

A total of 281 nonduplicated Staphylococcus aureus blood isolates were collected from January to May 2017 from eight hospitals in South Korea to investigate the epidemiological traits of ceftaroline resistance in methicillin-resistant S. aureus (MRSA). Cefoxitin-disk diffusion tests and the mecA gene PCR revealed that 56.6% (159/281) of the S. aureus isolates were MRSA, and most belonged to ST5 (50.3%, 80/281) and ST72 (41.5%, 66/281). Of the MRSA isolates, 44.0% (70/159) were nonsusceptible to ceftaroline (MIC ≥ 2 mg/liter), whereas all of the methicillin-susceptible S. aureus isolates were susceptible to the drug. Eight amino acid substitutions in penicillin-binding protein 2a (PBP2a), including four (L357I, E447K, I563T, and S649A) in the penicillin-binding domain (PBD) and four (N104K, V117I, N146K, and A228V) in the non-PBD (nPBD) of PBP2a, were associated with ceftaroline resistance. The accumulation of substitutions in PBP2a resulted in the elevation of ceftaroline MICs: one substitution at 1 to 2 mg/liter, two or three substitutions at 2 to 4 mg/liter, and five substitutions at 4 or 16 mg/liter. Ceftaroline resistance in MRSA might be the result of clone-specific PBP2a polymorphism, along with substitutions both in PBD and nPBD, and the elevated ceftaroline MICs were associated with the substitution sites and accumulation of substitutions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cephalosporins/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Penicillin-Binding Proteins/genetics , Polymorphism, Genetic/genetics , Staphylococcal Infections/microbiology , Amino Acid Substitution/genetics , Cefoxitin/pharmacology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests/methods , Republic of Korea , Staphylococcal Infections/drug therapy , Ceftaroline
20.
Chongqing Medicine ; (36): 2385-2388, 2016.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-492857

ABSTRACT

Objective To screen and identify the aptamers of the recombinant transpeptidase domain of PBP2a(penicillin binding protein 2a ,PBP2a) .Methods By using the recombinant transpeptidase domain of PBP2a as the screening target ,oligonucle-otides which were capable of specifically binding to the protein were screened by a random oligonucleotide library through the stem -atic evolution of ligand by exponential enrichment (SELEX )technique .The ssDNA was cloned and sequenced ,and the secondary structure of aptamer clones was predicted with mfold program .Results After 11 cycles of the selection ,the aptamers which were capable of binding to PBP2a with high affinity have been selected .40 clones from the 8 and 10 cycles were selected randomly and se-quenced .The aptamers obtained had no obvious homology according to their sequences by the sequence alignments ,and the 40 aptamers were classified to three groups according to their secondary structures .The aptamer 13 was found to be specific for the target protein with the highest affinity .Conclusion Aptamers for the recombinant transpeptidase domain of PBP2a with high affili-ty and specificity were successfully screened by SELEX ,which lays a foundation for exploring new ways of diagnosis and treatment of MRSA infection .

SELECTION OF CITATIONS
SEARCH DETAIL
...