Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 163: 106979, 2024 May.
Article in English | MEDLINE | ID: mdl-38308963

ABSTRACT

Maternal stress is consistently linked to alterations in maternal behavior and infant neurodevelopmental outcomes. As the Latino population grows in the U.S., it is increasingly important to understand how culturally relevant factors affect this relationship. This study aimed to address the role of sociocultural stressors on maternal sensitivity and markers of infant emotional regulation and the neuroendocrine response to stress in mother/infant dyads of Mexican descent. Pregnant women of Mexican descent (n = 115) were recruited during early pregnancy and followed until their infants were 6 months old. Mothers completed measures of sociocultural stressors (acculturative stress and discrimination) at pre and postnatal time points. At 6 months, dyads underwent the Still Face procedure. Mothers were observed for behaviors exhibiting maternal responsivity, while negative vocalizations were observed in infants. Salivary cortisol was also collected from infants. Maternal responsivity was a salient risk factor for alterations in infant emotional regulation and cortisol activity. Postnatal experiences of discrimination were also negatively associated with infant negative affect. This work highlights maternal responsivity and points to a potential role for experiences of discrimination in the response to stress in the mother/child dyad that may have consequences for the development of emotional regulation in infants of Mexican descent.


Subject(s)
Hydrocortisone , Stress, Psychological , Infant , Child , Humans , Female , Pregnancy , Stress, Psychological/psychology , Mothers/psychology , Maternal Behavior , Neurosecretory Systems , Mother-Child Relations/psychology
2.
Nutrients ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678125

ABSTRACT

Cardiovascular control is vulnerable to forced high sodium consumption during the per-inatal period, inducing programming effects, with anatomical and molecular changes at the kidney, brain, and vascular levels that increase basal and induce blood pressure. However, the program- ming effects of the natriophilia proper of the perinatal period on blood pressure control have not yet been elucidated. In order to evaluate this, we studied the effect of a sodium overload challenge (SO) on blood pressure response and kidney and brain gene expression in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats showed a more sustained increase in blood pressure after SO than controls (PM-Ctrol). They also presented a reduced number of glomeruli, decreased expression of TRPV1, and increased expression of At1a in the kidney cortex. The relative expression of heteronuclear vaso- pressin (AVP hnRNA) and AVP in the supraoptic nucleus was unchanged after SO in PM-NaCl in contrast to the increase observed in PM-Ctrol. The data indicate that the availability of a rich source of sodium during the perinatal period induces a long-term effect modifying renal, cardiovascular, and neuroendocrine responses implicated in the control of hydroelectrolyte homeostasis.


Subject(s)
Blood Pressure , Kidney , Sodium Chloride, Dietary , Vasopressins , Animals , Female , Male , Pregnancy , Rats , Kidney/metabolism , Rats, Wistar , Sodium Chloride, Dietary/pharmacology
3.
Int J Dev Neurosci ; 82(6): 486-498, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35718760

ABSTRACT

Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of neonatal treatment of d-fenfluramine (d-FEN), a serotonin (5-HT) releaser, on the behavioral expression of adult male Swiss mice. For this purpose, we divided pregnant female Swiss mice into two groups (n = 6 each and ~35 g). Their offspring were treated with d-FEN (3 mg/kg, s.c.) from postnatal days (PND) 5 to 20. At PND 21, one male puppy of each litter was euthanized; the midbrain and the hippocampus were dissected for RNA analysis. At PND 70, the male offspring underwent a behavioral assessment in the open field, elevated plus-maze, light-dark box, tail suspension, and rotarod test. The programmed animals had a decrease in 5HT1a, serotonin transporter (SERT), and brain-derived neurotrophic factor (BDNF) expression in the mesencephalic raphe region. Alternatively, there was a reduction only in the tryptophan hydroxylase (TPH2) and BDNF expression in the hippocampus. In the light-dark box test, offspring of the treated group had higher latency to light and less time on the light side than the control. Also, it was observed less time of immobility in the tail suspension test. We also observed low motor skill learning in the rotarod test. These findings suggest that programming with d-FEN during the neonatal period alters a mesencephalic and hippocampal serotonergic system, promoting anxiety, antidepressant behavior, low coordination, and motor learning in adults.


Subject(s)
Brain-Derived Neurotrophic Factor , Serotonin , Animals , Antidepressive Agents , Brain-Derived Neurotrophic Factor/metabolism , Dogs , Female , Fenfluramine , Male , Mammals/metabolism , Mice , Pregnancy , RNA , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/metabolism
4.
Front Cell Dev Biol ; 9: 756616, 2021.
Article in English | MEDLINE | ID: mdl-35178394

ABSTRACT

Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague-Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.

5.
Mol Neurobiol ; 58(3): 1036-1051, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33083963

ABSTRACT

The serotoninergic system plays an important role in the ontogeny of the mammalian central nervous system, and changes in serotonin production during development may lead to permanent changes in brain cytoarchitecture and function. The present study investigated the programming effects of neonatal serotonin depletion on behavior and molecular components of the serotoninergic system in adult male and female rats. Subcutaneous para-chlorophenylalanine (pCPA) administration (100 mg kg-1) was performed daily on postnatal days 8-16 to deplete brain serotonin content. During adulthood, elevated plus-maze, open field, social interaction, forced swimming, and food, saline, and sucrose intake tests were performed. Relative expression of serotonin neurotransmission components in several brain areas was determined by qPCR. Additionally, serotonin immunofluorescence and neuropeptide mRNA expression were assessed in dorsal raphe (DRN) and paraventricular (PVN) nuclei, respectively. Rat performance in behavioral tests demonstrated a general increase in locomotor activity and active escape behavior as well as decreased anxiety-like behavior after neonatal brain serotonin depletion. The behavioral programming effects due to neonatal serotonin depletion were more pronounced in females than males. At the gene expression level, the mRNA of Tph1 and Tph2 were lower in DRN while Htr2c was higher in the amygdala of pCPA-treated males, while Htr1a, Htr2c, Oxt, Avp, Crh, and Trh were not different in any treatments or sex in PVN. The results indicate that neonatal serotonin depletion has long-term consequences on locomotion and anxiety-like behavior associated with long-lasting molecular changes in the brain serotoninergic system in adult rats.


Subject(s)
Aging/pathology , Anti-Anxiety Agents/metabolism , Serotonin/deficiency , Sex Characteristics , Amygdala/metabolism , Animals , Animals, Newborn , Body Weight , Brain/metabolism , Dorsal Raphe Nucleus/metabolism , Elevated Plus Maze Test , Feeding Behavior , Female , Gene Expression Regulation , Male , Open Field Test , Paraventricular Hypothalamic Nucleus/metabolism , Prefrontal Cortex/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Serotonin/metabolism , Social Interaction , Swimming
6.
Metab Brain Dis ; 35(8): 1341-1351, 2020 12.
Article in English | MEDLINE | ID: mdl-32827287

ABSTRACT

Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of perinatal fluoxetine (FLX), a selective serotonin reuptake inhibitor, administration on the behavioral expression of adult male Swiss mice. For this purpose, two groups (n = 6 each, and ~ 35 g) of pregnant female Swiss mice were mated. Their offspring were treated with FLX (10 mg/Kg, s.c.) from postnatal day (PND) 5 to 15. At PND 16, one male puppy of each litter was euthanized, and the hippocampus was dissected for RNA analysis. At 70 days of life, the male offspring underwent a behavioral assessment in the open field, object recognition task, light-dark box, tail suspension and rotarod test. According to our results, the programmed animals had a decrease in TPH2, 5HT1a, SERT, BDNF, and LMX1B expression. Also, it was observed less time of immobility in tail suspension test and higher grooming time in the open field test. In the light-dark box test, the FLX-treated offspring had less time in the light side than control. We also observed a low cognitive performance in the object recognition task and poor motor skill learning in the rotarod test. These findings suggest that programming with FLX during the neonatal period alters a hippocampal serotonergic system, promoting anxiety and antidepressant behavior in adults, as well as a low mnemonic capacity.


Subject(s)
Anxiety/chemically induced , Anxiety/metabolism , Fluoxetine/toxicity , Hippocampus/drug effects , Selective Serotonin Reuptake Inhibitors/toxicity , Animals , Animals, Newborn , Anxiety/psychology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Female , Fluoxetine/administration & dosage , Hippocampus/metabolism , Male , Mice , Pregnancy , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage , Time Factors
7.
J Dev Orig Health Dis ; 10(3): 338-344, 2019 06.
Article in English | MEDLINE | ID: mdl-30827294

ABSTRACT

Diabetes during pregnancy is associated with aortic remodelling in the fetus, stimulating the development of cardiovascular diseases in adult life. However, studies suggest that the use of foods high in omega-3 fatty acid, such as flaxseed oil, may reverse this effect of metabolic programming. This study aimed at investigating whether the effects of diabetes in mothers are passed on to their offspring in a gender-specific manner and whether the flaxseed oil used during pregnancy and lactation reverses or not the possible negative effects of this programming. Diabetic female rats (n = 18) were mated and allocated into three groups (n = 6): high-fat group (HG); flaxseed oil group (FOG) and control group (CG) (nondiabetic rats) during pregnancy and lactation. On the 21st day, male and female pups were weaned on a standard diet until 180 days. Aorta histomorphometry was analysed. Intima-media layer thickness was larger in FOG than CG in male (+15%) and than HG in female (+13.7%). Male FOG (+11.5%) showed higher amount of elastic fibre than CG. Maternal intake of flaxseed oil during pregnancy and lactation of diabetic mothers program the offspring to increase aorta intima-media layer thickness in adulthood and preserves aorta elastic fibres deposition in male offspring.


Subject(s)
Aorta/pathology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Experimental/complications , Linseed Oil/administration & dosage , Prenatal Exposure Delayed Effects/prevention & control , Sex Characteristics , Animals , Animals, Newborn , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Wistar , Vascular Remodeling
8.
J Pediatr ; 205: 55-60.e1, 2019 02.
Article in English | MEDLINE | ID: mdl-30404738

ABSTRACT

OBJECTIVES: To evaluate if obesity is associated with increased angiotensin II (Ang II) and decreased angiotensin-(1-7) or Ang-(1-7) in the circulation and urine among adolescents born prematurely. STUDY DESIGN: In a cross-sectional analysis of 175 14-year-olds born preterm with very low birth weight, we quantified plasma and urinary Ang II and Ang-(1-7) and compared their levels between subjects with overweight/obesity (body mass index ≥85th percentile, n = 61) and those with body mass index <85th percentile (n = 114) using generalized linear models, adjusted for race and antenatal corticosteroid exposure. RESULTS: Overweight/obesity was associated with higher systolic blood pressure and a greater proportion with high blood pressure. After adjustment for confounders, overweight/obesity was associated with an elevated ratio of plasma Ang II to Ang-(1-7) (ß: 0.57, 95% CI 0.23-0.91) and higher Ang II (ß: 0.21 pmol/L, 95% CI 0.03-0.39) but lower Ang-(1-7) (ß: -0.37 pmol/L, 95% CI -0.7 to -0.04). Overweight/obesity was associated with a higher ratio of urinary Ang II to Ang-(1-7) (ß: 0.21, 95% CI -0.02 to 0.44), an effect that approached statistical significance. CONCLUSIONS: Among preterm-born adolescents, overweight/obesity was associated with increased Ang II but reduced Ang-(1-7) in the circulation and the kidney as well as higher blood pressure. Obesity may compound the increased risk of hypertension and cardiovascular disease in individuals born prematurely by further augmenting the prematurity-associated imbalance in the renin-angiotensin system.


Subject(s)
Pediatric Obesity/epidemiology , Premature Birth/epidemiology , Adolescent , Angiotensin I/blood , Angiotensin II/blood , Body Mass Index , Cross-Sectional Studies , Female , Humans , Hypertension/epidemiology , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Male , Pediatric Obesity/blood , Peptide Fragments/blood , Pregnancy , Prospective Studies
9.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28336818

ABSTRACT

Excessive sodium (Na+) intake in modern society has been associated with several chronic disorders such as hypertension. Several studies suggest that early life events can program physiological systems and lead to functional changes in adulthood. Therefore, we investigated behavioral and neuroendocrine responses under basal conditions and after 48 h of water deprivation in adult (60-day-old Wistar rats) male, Wistar rats originating from dams were offered only water or 0.15 mol/L NaCl during pregnancy and lactation. Early life salt exposure induced kidney damage, as shown by a higher number of ED-1 positive cells (macrophages/monocytes), increased daily urinary volume and Na+ excretion, blunted basal water intake and plasma oxytocin levels, and increased plasma corticosterone secretion. When challenged with water deprivation, animals exposed to 0.15 mol/L NaCl during early life showed impaired water intake, reduced salt preference ratio, and vasopressin (AVP) secretion. In summary, our data demonstrate that the perinatal exposure to excessive Na+ intake can induce kidney injury in adult offspring and significantly affect the key mechanisms regulating water balance, fluid intake, and AVP release in response to water deprivation. Collectively, these novel results highlight the impact of perinatal programming on the homeostatic mechanisms regulating fluid and electrolyte balance during exposure to an environmental stress (i.e. dehydration) in later life.


Subject(s)
Behavior, Animal/drug effects , Corticosterone/blood , Kidney/drug effects , Oxytocin/blood , Prenatal Exposure Delayed Effects/metabolism , Sodium Chloride/pharmacology , Animals , Drinking/drug effects , Female , Kidney/metabolism , Lactation/physiology , Male , Pregnancy , Rats , Rats, Wistar , Urination/drug effects , Urination/physiology , Water Deprivation/physiology , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL