Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39360334

ABSTRACT

The growing high standard of people's wear has put forward requirements for fabrics, and multifunctional fabrics have been developed precisely in response to the requirements of the times. However, the incineration of waste fabrics produces a large amount of pollutants, resulting in a massive waste of resources and environmental pollution. Herein, the degradable nanofiber yarns (NYs) with self-cleaning properties were fabricated by in situ growth of SiO2 nanoparticles on the surface of the electrospun poly(p-dioxanone) (PPDO) NYs using the Stöber method. Then, the PPDO NYs were blended with carbon fibers and the PPDO/SiO2 NYs with themselves to form the Janus PPDO fabrics, respectively. The Janus PPDO fabric offered asymmetric wettability and dual personal thermal management properties. The PPDO/C side of the Janus PPDO fabric provided 65.8 °C at 1.5 V or 58.5 °C under one sunlight intensity for radiative heating. The PPDO/SiO2 side exhibited high solar reflectivity (81.8%) and mid-infrared (MIR) emissivity (99.1%), which reduced the skin temperature by 4.6 °C, resulting in radiative cooling. Moreover, the Janus PPDO fabrics display an excellent electromagnetic interference (EMI) shielding performance (53.3 dB). Therefore, yarn-based degradable Janus fabric has a promising future in multifunctional wearable products.

2.
Small ; : e2404310, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252649

ABSTRACT

Azobenzene (azo)-based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo-based fabric composed of tetra-ortho-fluorinated photo-liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo-charging (green light) and discharging (blue light) under visible light range, solvent-free operation, long-term energy storage (706 days), and good capacity of releasing high-temperature heat (80-95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy-storage performance upon 1500 bending cycles, 18-h washing or 6-h soaking. The generated heat from charged fabric is facilitated by the Z-to-E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room-temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.

3.
ACS Appl Mater Interfaces ; 16(36): 48235-48245, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39194175

ABSTRACT

Advancements in radiative cooling technology have shown significant progress in recent years. However, the limited mechanical properties of most radiative coolers greatly hinder their practical applications, particularly in the context of human cooling fabrics. In this study, we present the fabrication of facile and stretchable radiative coolers with exceptional cooling performance by utilizing the design of porous radiative coolers as guidelines for developing promising elastomer coolers. Subsequently, we employ a simple electrospinning method to fabricate these coolers, resulting in impressive solar reflectivity (∼96.1%) and infrared emissivity (over 95%). During the summer, these coolers demonstrate a maximum temperature drop of ∼9.6 °C. Additionally, the developed coolers exhibit superior hydrophobicity and mechanical properties, with a high strain capacity exceeding 700% and a stress tolerance of over 30 MPa, highlighting their potential for application in automobile textiles and cooling fabrics. Furthermore, we evaluate the radiative cooling performance of stretchable coolers using global-scale modeling, revealing their significant cooling potential across various regions worldwide.

4.
ACS Appl Mater Interfaces ; 16(28): 36973-36982, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38966874

ABSTRACT

Personal thermal management technology, which adjusts the heat exchange between the human body and the environment, can passively heat or cool the body to maintain a comfortable core temperature, thereby enhancing comfort and reducing energy consumption. However, most existing personal thermal management materials have static properties, such as fixed solar reflectance and infrared emissivity, which do not support real-time dynamic temperature regulation. Moreover, sweat accumulation on the skin surface, while contributing to temperature regulation, can significantly reduce comfort. This study constructs a unidirectional moisture-permeable intelligent thermal management fabric system to achieve superior thermal and moisture comfort in complex environments. The fabric incorporates thermochromic microcapsules into PAN nanofibers by using electrospinning technology for intelligent thermal management. Subsequent hydrophobic treatment of the fiber film surface imparts the fabric with unidirectional wetting properties. The nanofibrous structure provides intrinsic elasticity and breathability. In heating mode, the fabric's average sunlight reflectance is 42.1%, which increases to 82.2% in cooling mode, resulting in a reflectance difference of approximately 40%. The hydrophobic treatment endows the fabric with excellent moisture absorption and perspiration properties, demonstrated by a unidirectional moisture transport index of 696.63 and a perspiration evaporation rate of 5.88 mg/min. When the fabric temperature matches the ambient temperature, the photothermal conversion power difference of the Janus metafabric in two modes reaches 248.37 W m-2. Additionally, Janus metafabrics show the potential for temperature-responsive design and repeated writing applications. The outstanding wearability and dynamic spectral properties of these metafabrics open new pathways for sustainable energy, smart textiles, and thermal-moisture comfort applications.

5.
Angew Chem Int Ed Engl ; 63(40): e202408857, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38993074

ABSTRACT

Owing to the significant latent heat generated at constant temperatures, phase change fibers (PCFs) have recently received much attention in the field of wearable thermal management. However, the phase change materials involved in the existing PCFs still experience a solid-liquid transition process, severely restricting their practicality as wearable thermal management materials. Herein, we, for the first time, developed intrinsically flexible PCFs (polyethylene glycol/4,4'-methylenebis(cyclohexyl isocyanate) fibers, PMFs) through polycondensation and wet-spinning process, exhibiting an inherent solid-solid phase transition property, adjustable phase transition behaviors, and outstanding knittability. The PMFs also present superior mechanical strength (28 MPa), washability (>100 cycles), thermal cycling stability (>2000 cycles), facile dyeability, and heat-induced recoverability, all of which are highly significant for practical wearable applications. Additionally, the PMFs can be easily recycled by directly dissolving them in solvents for reprocessing, revealing promising applications as sustainable materials for thermal management. Most importantly, the applicability of the PMFs was demonstrated by knitting them into permeable fabrics, which exhibit considerably improved thermal management performance compared with the cotton fabric. The PMFs offer great potential for intelligent thermal regulation in smart textiles and wearable electronics.

6.
ACS Appl Mater Interfaces ; 16(24): 31228-31236, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38849743

ABSTRACT

Flexible wearable thermoelectric (TE) devices hold great promise for a wide range of applications in human thermal management and self-powered systems. Currently, the main challenge faced by flexible TE devices is the inadequate dissipation of heat, which hinders the maintenance of significant temperature differences over prolonged periods. Most existing heat sinks, being rigid in nature, compromise the overall flexibility of the device. Therefore, the challenge lies in maintaining device flexibility while ensuring effective heat dissipation. In this study, we developed a flexible phase-change material (FPCM) heat sink to address this issue and enhance the heat dissipation capabilities of TE devices (FPCM-TED). When used as a thermoelectric cooler (TEC), the FPCM heat sink efficiently absorbs heat from the hot end, enabling long-lasting and high-performance cooling of the TEC. This capability effectively reduces body temperature by up to 11.21 °C and can be sustained for at least 300 s. Additionally, when employed as a thermoelectric generator (TEG), the FPCM absorbs heat at the cold end, thereby increasing the temperature difference between the hot and cold ends and enhancing the output performance of the device. By integrating FPCM-TED into a fabric wristband, we successfully developed a self-powered wireless pedometer sensing system. This breakthrough lays a solid foundation for the application of wearable, smart clothing.

7.
ACS Nano ; 18(21): 13808-13817, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747521

ABSTRACT

Heating requirements for residential and commercial dwellings result in significant energy consumption and deleterious environmental effects. Personal radiative thermal management textiles regulate the wearer's body temperature by controlling the material's intrinsic optical properties. Passive heating textiles suppress radiative heat losses and therefore significantly reduce the energy consumption required for building heating systems. Guided by an optical theoretical approach, a transparent radiation shield (TRS) is designed based on silver nanowires (AgNWs) that can suppress human body heat with simultaneous visible light transmittance anticipated for practical fabrics. We experimentally demonstrated a TRS with large infrared light reflectance (low emissivity of 35%) and a visible (VIS) transparency value of 75% (400-800 nm). The results are well corroborated by the Mie scattering theory and the wire-mesh equivalent sheet impedance model, which provide fundamental mechanism understanding and guidance toward higher performance. The TRS is fabricated by a simple, solution-processing method with thermoplastic elastomer protective layers, granting notable stretching capabilities, mechanical robustness, and conformability to any body shape or object. The rigorous theoretical strategy enables the scalable synthesis of low-emissivity and visibly transparent textiles for personal thermal comfort.

8.
J Colloid Interface Sci ; 665: 1007-1016, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579384

ABSTRACT

To cope with the demand of more complex and variable applications, it is urgent to develop dual-mode triggered, breathable, and shape-memory wearable heaters for all-weather personal thermal management of composite phase change materials (PCMs). Herein, after high-temperature carbonization of ZnCo-MOF (metal-organic framework) nanosheet array grown in situ on flexible and breathable carbon cloth (CC) and subsequent encapsulation of polyethylene glycol (PEG), the as-prepared PEG/CC@Co/CNT (carbon nanotube) composite PCMs exhibited good breathability, mechanical strength (tensile strength of 9.15 MPa), thermal energy storage density (114.19 J/g), and shape memory due to the synergy of flexible CC skeleton and rigid PEG. More importantly, composite PCMs possessed excellent solar-thermal (93.7 %, 100 mW/cm2) and electro-thermals (94.5 %, 2.0 V) conversion and storage capacity, benefiting from the conjugation effect of high graphitized carbon/carbon heterostructure with fast electron/photon/phonon transmission and the localized surface plasmon resonance effect of Co nanoparticles. Therefore, the integration of solar heating and Joule heating into breathable composite PCMs can be accurately used for next-generation all-weather, all-season, dual-mode triggered personal thermal management, including indoor/outdoor, daytime/night, rainy/cloudy and other complex and changeable scenarios.

9.
ACS Nano ; 18(14): 9798-9822, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38551449

ABSTRACT

Extreme climates have become frequent nowadays, causing increased heat stress in human daily life. Personal thermal management (PTM), a technology that controls the human body's microenvironment, has become a promising strategy to address heat stress. While effective in ordinary environments, traditional high-performance fibers, such as ultrafine, porous, highly thermally conductive, and phase change materials, fall short when dealing with harsh conditions or large temperature fluctuations. Aerogels, a third-generation superinsulation material, have garnered extensive attention among researchers for their thermal management applications in building energy conservation, transportation, and aerospace, attributed to their extremely low densities and thermal conductivity. While aerogels have historically faced challenges related to weak mechanical strength and limited secondary processing capacity, recent advancements have witnessed notable progress in the development of wearable aerogels for PTM. This progress underscores their potential applications within extremely harsh environments, serving as self-powered smart devices and sensors. This Review offers a timely overview of wearable aerogels and their PTM applications with a particular focus on their wearability and suitability. Finally, the discussion classifies five types of PTM applications based on aerogel function: thermal insulation, heating, cooling, adaptive regulation (involving thermal insulation, heating, and cooling), and utilization of aerogels as wearable smart devices.

10.
Adv Sci (Weinh) ; 11(21): e2309605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532281

ABSTRACT

Thermal protective textiles are crucial for safeguarding individuals, particularly firefighters and steelworkers, against extreme heat, and for preventing burn injuries. However, traditional firefighting gear suffers from statically fixed thermal insulation properties, potentially resulting in overheating and discomfort in moderate conditions, and insufficient protection in extreme fire events. Herein, an innovative soft robotic textile is developed for dynamically adaptive thermal management, providing superior personal protection and thermal comfort across a spectrum of environmental temperatures. This unique textile features a thermoplastic polyurethane (TPU)-sealed actuation system, embedded with a low boiling point fluid for reversible phase transition, resembling an endoskeleton that triggers an expansion within the textile matrix for enhanced air gap and thermal insulation. The thermal resistance improves automatically from 0.23 to 0.48 Km2 W-1 by self-actuating under intense heat, exceeding conventional textiles by maintaining over 10 °C cooler temperatures. Additionally, the knitted substrate incorporated into the soft actuators can substantially mitigate convective heat transfer, as evidenced by the thermal resistance tests and the temperature mapping derived from numerical simulations. Moreover, it boasts significantly increased moisture permeability. The thermoadaptation and breathability of this durable all-fabric system signify considerable progress in the development of protective clothing with high comfort for dynamic and extreme temperature conditions.

11.
Nanomicro Lett ; 16(1): 153, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478150

ABSTRACT

Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being. By merely broadening the set-point of indoor temperatures, we could significantly slash energy usage in building heating, ventilation, and air-conditioning systems. In recent years, there has been a surge in advancements in personal thermal management (PTM), aiming to regulate heat and moisture transfer within our immediate surroundings, clothing, and skin. The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering. An emerging research area in PTM is personal radiative thermal management (PRTM), which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation. However, it is less taken into account in traditional textiles, and there currently lies a gap in our knowledge and understanding of PRTM. In this review, we aim to present a thorough analysis of advanced textile materials and technologies for PRTM. Specifically, we will introduce and discuss the underlying radiation heat transfer mechanisms, fabrication methods of textiles, and various indoor/outdoor applications in light of their different regulation functionalities, including radiative cooling, radiative heating, and dual-mode thermoregulation. Furthermore, we will shine a light on the current hurdles, propose potential strategies, and delve into future technology trends for PRTM with an emphasis on functionalities and applications.

12.
ACS Appl Mater Interfaces ; 16(6): 7732-7741, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306189

ABSTRACT

The implementation of passive cooling strategies is crucial for transitioning from the current high-power- and energy-intensive thermal management practices to more environmentally friendly and carbon-neutral alternatives. Among the various approaches, developing thermal management materials with high thermal conductivity and emissivity for effective cooling of personal and wearable devices in both indoor and outdoor settings poses significant challenges. In this study, we successfully fabricated a cooling patch by combining biodegradable silk fibroin with boron nitride nanosheets. This patch exhibits consistent heat dissipation capabilities under different ambient conditions. Leveraging its excellent radiative cooling efficiency (Rsolar = 0.89 and εLWIR = 0.84) and high thermal conductivity (in-plane 27.58 W m-1 K-1 and out-plane 1.77 W m-1 K-1), the cooling patch achieves significant simulated skin temperature reductions of approximately 2.5 and 8.2 °C in outdoor and indoor conditions, respectively. Furthermore, the film demonstrates excellent biosafety and can be recycled and reused for at least three months. This innovative BNNS/SF film holds great potential for advancing the field of personal thermal management materials.

13.
Small ; 20(23): e2311272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38366302

ABSTRACT

Personal protective equipment pays attention exclusively to external safety protection and ignores the internal thermoregulation of physiological state in association with sweating. Herein, a super-hygroscopic calcium-doped poly(sodium 4-styrenesulfonate) and superhydrophobic metal-organic-framework-overlayed wearables (Ca-PSS/MOF) integrated cooling wearable is proposed for special personal thermal management (PTM). Compared to the pristine fabric, the superhydrophobic MOF wearables exhibit anti-fouling and antibacterial capabilities, and the antibacterial efficiency is up to 99.99% and 98.99% against E. coli and S. aureus, respectively. More importantly, Ca-PSS/MOF demonstrate significant heat index changes up to 25.5 °C by reducing relative humidity dramatically from 91.0% to 60.0% and temperature from 36.5 to 31.6 °C during the running test. The practical feasibility of the Ca-PSS/MOF cooling wearables is well proved with the protective suit of the fireman. Owing to these multifunctional merits, the sandwich-structured cooling Ca-PSS/MOF are expected to provide new insights for designing the next-generation multifunctional apparel for PTM.


Subject(s)
Metal-Organic Frameworks , Wearable Electronic Devices , Zinc , Zinc/chemistry , Metal-Organic Frameworks/chemistry , Humans , Escherichia coli , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Temperature , Hydrophobic and Hydrophilic Interactions
14.
ACS Appl Mater Interfaces ; 16(3): 3334-3347, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193700

ABSTRACT

By virtue of their capacity to absorb and release energy during the phase change process, phase change materials (PCMs) are ideal for personal thermal management (PTM). The combination of reduced graphene oxide/cellulose sodium aerogel (rGCA) and lauric acid/myristic acid binary eutectic phase change gel (LMG) creates a composite phase change material that possesses outstanding photothermal conversion capabilities, electro-thermal conversion capabilities, energy storage capabilities, and shape-stable performance. The results showed that rGCA had a maximum adsorption efficiency of 99.7% with a melting latent heat of 124.6 J g-1. The high absorption rate of rGCA to LMG is a result of the capillary force, pore characteristics, hydrogen bonding, and the π-π interaction. Notably, rGCA and LMG composite material (rGCG) exhibited an excellent photothermal conversion efficiency of 96.5% and electro-thermal conversion of 82.3%. Results indicate that binary eutectic phase change materials are more suitable for temperature regulation than single phase change materials, making them more suitable for PTM. It is anticipated that the innovative thermal comfort solution, which provides thermal shielding, thermal energy storage, self-supporting characteristics, and wearability, will offer new possibilities for the next generation of wearable PTMs.

15.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251119

ABSTRACT

In recent years, with the rapid advancement in various high-tech technologies, efficient heat dissipation has become a key issue restricting the further development of high-power-density electronic devices and components. Concurrently, the demand for thermal comfort has increased; making effective personal thermal management a current research hotspot. There is a growing demand for thermally conductive materials that are diversified and specific. Therefore, smart thermally conductive fiber materials characterized by their high thermal conductivity and smart response properties have gained increasing attention. This review provides a comprehensive overview of emerging materials and approaches in the development of smart thermally conductive fiber materials. It categorizes them into composite thermally conductive fibers filled with high thermal conductivity fillers, electrically heated thermally conductive fiber materials, thermally radiative thermally conductive fiber materials, and phase change thermally conductive fiber materials. Finally, the challenges and opportunities faced by smart thermally conductive fiber materials are discussed and prospects for their future development are presented.

16.
Small ; 20(9): e2307873, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37853209

ABSTRACT

Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.

17.
Adv Mater ; 36(4): e2310102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865832

ABSTRACT

Electronic textiles have gradually evolved into one of the most important mainstays of flexible electronics owing to their good wearability. However, textile multifunctionality is generally achieved by stacking functional modules, which is not conducive to wearability. Integrating these modules into a single fiber provides a better solution. In this work, a core-spun functional fiber (CSF) constructed from hyper-environmentally stable Zn-based eutectogel as the core layer and polytetrafluoroethylene as the sheath is designed. The CSF achieves a synergistic output effect of piezoelectricity-enhanced triboelectricity, as well as reliable hydrophobicity, and high mid-infrared emissivity and visible light reflectivity. A monolayer functionalized integrated textile is woven from the CSF to enable effective energy (mechanical and droplet energy) harvesting and personal thermal management functions. Furthermore, scenarios for the energy supply, motion detection, and outdoor use of electronic fabrics for electronics applications are demonstrated, opening new avenues for the functional integration of electronic textiles.

18.
Small ; 20(15): e2308194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009488

ABSTRACT

Passive heating textiles (PHTs) have drawn increasing attention due to the advantages of energy-conservation heating. However, the heating capabilities of current PHTs are typically static and non-tunable, presenting poor adaptation to dynamic winter. Herein, a novel Janus textile with tunable heating modes is developed by constructing a customized structure with asymmetric optical properties. This Janus textile is created by coating one side of a cotton fabric with silver nanowires (AgNWs) and then applying transition metal carbides/nitrides (MXene) to the other side. The MXene side exhibits high solar absorptivity and low mid-infrared emissivity, while the AgNWs side has moderate solar absorptivity and mid-infrared emissivity. This structure ensures that the solar and radiative heating temperatures of the MXene side are 16 °C and 1.7 °C higher than those of the AgNWs side. This distinction allows for on-demand, accurate adjustments in solar and radiative heating capabilities by flipping the textile according to ambient temperature. Furthermore, this innovative design also features desired electric heating, thermal camouflage, self-cleaning and antibacterial properties, electromagnetic interference shielding, durability, and wearability. The Janus textile enables precise thermoregulation of the human body to adapt to variable cold weather, making it essential for optimal personal thermal management and climate change mitigation.

19.
Article in English | MEDLINE | ID: mdl-38040021

ABSTRACT

Passive and active wearable heaters have received widespread attention due to their efficient utilization of solar energy and all-weather heating capabilities, but the current challenges are their preparation processes being time-consuming and equipment expensive. Herein, a simple and facilitated preparation method for the multifunctional wearable heater was developed, which springs Ag nanoparticles on the shish-kebab superstructure film via deposited melanin-like polydopamine as the adhesive. The light absorption ability of the resultant wearable heater in the visible region can be significantly enhanced by the addition of polydopamine, realizing a highly efficient photothermal conversion ability. Accordingly, it can achieve rapid warming ability whether passive heating (up to 45 °C about 60 s at 100 mW/cm2) or active heating (up to 72 °C about 40 s at 0.6 V), compared to ordinary cotton fabric. In addition, it can realize a 6.3 °C temperature difference with Cotton, showing excellent heat preservation ability. This study demonstrates a simple and low-cost approach for the prepared shish-kebab superstructure-based wearable heaters.

20.
ACS Nano ; 17(20): 20299-20307, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37831602

ABSTRACT

Thermal management textiles provide an energy-efficient strategy for personal thermal comfort by regulating heat flow between the human body and the environment. However, textiles with a single heating or cooling mode cannot realize temperature regulation under dynamic weather. Furthermore, monocolor textiles do not satisfy aesthetic requirements in a garment. Here, we develop a thermochromic (TC) conductive fiber with a coaxial structure composed of a conductive core and thermochromic shell. The TC conductive fiber-woven fabric has the ability of low-energy dynamic thermal management by combining Joule heating and modulation of solar absorption. Compared with commercial white fabrics, TC conductive fabrics exhibit a maximum temperature drop of 2.5 K, while the temperature of colored commercial fabrics is 7.5-16 K higher than that of commercial white fabrics in the hot. In the cold, the combination of Joule heating and the photothermal effect can provide desired thermal comfort for humans. Meanwhile, heat obtained from solar absorption brings the temperature of a fabric to a predetermined level, which saves energy of 625 W/m2 compared to a conductive-fiber-based textile. In addition, TC conductive fabrics with trichromatic evolution provide a sensitive and instant temperature visualization capable of identification of invisible and intense infrared radiation. These results provide another path to expand potential applications of wearable, flexible electronics.

SELECTION OF CITATIONS
SEARCH DETAIL