Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Per Med ; 21(4): 211-218, 2024.
Article in English | MEDLINE | ID: mdl-38963131

ABSTRACT

Aim: Vancomycin, a crucial treatment for Gram-positive bacteria, necessitates therapeutic drug monitoring (TDM) to prevent treatment failures. We investigated the healthcare professional's compliance toward TDM of vancomycin recommendations and follow-up levels. Materials & methods: We collected data from 485 patients who received vancomycin in the Children's Cancer Hospital Egypt 57357 medical records system (Cerner) over 4 months, from January to April 2020. Results: Our data shows that only 54% of patients had TDM requests from healthcare professionals for the total patients who received vancomycin treatment. The healthcare professionals' compliance with the recommendations was 91.7%, while the follow-up levels were 66.7%. Conclusion: While overall adherence to recommendations is strong, enhancing compliance with follow-up levels remains a priority for improvement.


[Box: see text].


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Vancomycin , Humans , Vancomycin/therapeutic use , Drug Monitoring/methods , Child , Female , Male , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Precision Medicine/methods , Adolescent , Neoplasms/drug therapy , Egypt , Infant , Medical Oncology/methods , Medication Therapy Management
2.
Cell Oncol (Dordr) ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520648

ABSTRACT

BACKGROUND: Cancer immunotherapy is receiving worldwide attention for its induction of an anti-tumor response. However, it has had limited efficacy in some patients who acquired resistance. The dynamic and sophisticated complexity of the tumor microenvironment (TME) is the leading contributor to this clinical dilemma. Through recapitulating the physiological features of the TME, 3D bioprinting is a promising research tool for cancer immunotherapy, which preserves in vivo malignant aggressiveness, heterogeneity, and the cell-cell/matrix interactions. It has been reported that application of 3D bioprinting holds potential to address the challenges of immunotherapy resistance and facilitate personalized medication. CONCLUSIONS AND PERSPECTIVES: In this review, we briefly summarize the contributions of cellular and noncellular components of the TME in the development of immunotherapy resistance, and introduce recent advances in 3D bioprinted tumor models that served as platforms to study the interactions between tumor cells and the TME. By constructing multicellular 3D bioprinted tumor models, cellular and noncellular crosstalk is reproduced between tumor cells, immune cells, fibroblasts, adipocytes, and the extracellular matrix (ECM) within the TME. In the future, by quickly preparing 3D bioprinted tumor models with patient-derived components, information on tumor immunotherapy resistance can be obtained timely for clinical reference. The combined application with tumoroid or other 3D culture technologies will also help to better simulate the complexity and dynamics of tumor microenvironment in vitro. We aim to provide new perspectives for overcoming cancer immunotherapy resistance and inspire multidisciplinary research to improve the clinical application of 3D bioprinting technology.

3.
J Integr Med ; 22(2): 137-162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462407

ABSTRACT

BACKGROUND: The field of personalized medicine has gained increasing attention in cancer care, with the aim of tailoring treatment strategies to individual patients for improved outcomes. Herbal medicine, with its long-standing historical use and extensive bioactive compounds, offers a rich source of potential treatments for various diseases, including cancer. OBJECTIVE: To provide an overview of the current knowledge and evidence associated with incorporating herbal compounds into precision medicine strategies for cancer diseases. Additionally, to explore the general characteristics of the studies included in the analysis, focusing on their key features and trends. SEARCH STRATEGY: A comprehensive literature search was conducted from multiple online databases, including PubMed, Scopus, Web of Science, and CINAHL-EBSCO. The search strategy was designed to identify studies related to personalized cancer medicine and herbal interventions. INCLUSION CRITERIA: Publications pertaining to cancer research conducted through in vitro, in vivo, and clinical studies, employing natural products were included in this review. DATA EXTRACTION AND ANALYSIS: Two review authors independently applied inclusion and inclusion criteria, data extraction, and assessments of methodological quality. The quality assessment and biases of the studies were evaluated based on modified Jadad scales. A detailed quantitative summary of the included studies is presented, providing a comprehensive description of their key features and findings. RESULTS: A total of 121 studies were included in this review for analysis. Some of them were considered as comprehensive experimental investigations both in vitro and in vivo. The majority (n = 85) of the studies included in this review were conducted in vitro, with 44 of them specifically investigating the effects of herbal medicine on animal models. Additionally, 7 articles with a combined sample size of 31,271 patients, examined the impact of herbal medicine in clinical settings. CONCLUSION: Personalized medication can optimize the use of herbal medicine in cancer treatment by considering individual patient factors such as genetics, medical history, and other treatments. Additionally, active phytochemicals found in herbs have shown potential for inhibiting cancer cell growth and inducing apoptosis, making them a promising area of research in preclinical and clinical investigations. Please cite this article as: Tayeb BA, Kusuma IY, Osman AAM, Minorics R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. J Integr Med. 2024; 22(2): 137-162.

4.
J Allergy Clin Immunol Pract ; 12(1): 59-66, 2024 01.
Article in English | MEDLINE | ID: mdl-37996041

ABSTRACT

Allergen immunotherapy (AIT) remains to be the only disease-modifying treatment for IgE-mediated allergic diseases such as allergic rhinitis. It can provide long-term clinical benefits when given for 3 years or longer. Mechanisms of immune tolerance induction by AIT are underscored by the modulation of several compartments within the immune system. These include repair of disruption in epithelial barrier integrity, modulation of the innate immune compartment that includes regulatory dendritic cells and innate lymphoid cells, and adaptive immune compartments such as induction of regulatory T and B cells. Altogether, these are also associated with the dampening of allergen-specific TH2 and T follicular helper cell responses and subsequent generation of blocking antibodies. Although AIT is effective in modifying the immune response, there is a lack of validated and clinically relevant biomarkers that can be used to monitor desensitization, efficacy, and the likelihood of response, all of which can contribute to accelerating personalized medication and increasing patient care. Candidate biomarkers comprise humoral, cellular, metabolic, and in vivo biomarkers; however, these are primarily studied in small trials and require further validation. In this review, we evaluate the current candidates of biomarkers of AIT and how we can implement changes in future studies to help us identify clinically relevant biomarkers of safety, compliance, and efficacy.


Subject(s)
Immunity, Innate , Rhinitis, Allergic , Humans , Immune Tolerance , Lymphocytes , Desensitization, Immunologic , Allergens/therapeutic use , Biomarkers/metabolism
5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004434

ABSTRACT

Indiscriminate drug administration may lead to drug therapy results with varying effects on patients, and the proposal of personalized medication can help patients to receive effective drug therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic drug monitoring (TDM), can only be implemented from a single perspective. The development of pharmacometabolomics provides a research method for the realization of precise drug administration, which integrates the environmental and genetic factors, and applies metabolomics technology to study how to predict different drug therapeutic responses of organisms based on baseline metabolic levels. The published research on pharmacometabolomics has achieved satisfactory results in predicting the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them, the pharmacokinetics related to pharmacometabolomics are used to explore individual variability in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous metabolite changes. By searching for relevant literature with the keyword "pharmacometabolomics" on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into their research. This review explains the therapeutic effects of drugs on the body from the perspective of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for advancing the implementation of personalized medication.

6.
Biomater Adv ; 153: 213533, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392520

ABSTRACT

In the biomedical field, 3D printing has the potential to deliver on some of the promises of personalized therapy, notably by enabling point-of-care fabrication of medical devices, dosage forms and bioimplants. To achieve this full potential, a better understanding of the 3D printing processes is necessary, and non-destructive characterization methods must be developed. This study proposes methodologies to optimize the 3D printing parameters for soft material extrusion. We hypothesize that combining image processing with design of experiment (DoE) analyses and machine learning could help obtaining useful information from a quality-by-design perspective. Herein, we investigated the impact of three critical process parameters (printing speed, printing pressure and infill percentage) on three critical quality attributes (gel weight, total surface area and heterogeneity) monitored with a non-destructive methodology. DoE and machine learning were combined to obtain information on the process. This work paves the way for a rational approach to optimize 3D printing parameters in the biomedical field.


Subject(s)
Hydrogels , Printing, Three-Dimensional , Machine Learning
7.
Med Rev (2021) ; 3(4): 321-342, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38235406

ABSTRACT

Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.

8.
FEBS J ; 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36082537

ABSTRACT

The immune landscape varies among individuals. It determines the immune response and results in surprisingly diverse symptoms, even in response to similar external stimuli. However, the detailed mechanisms underlying such diverse immune responses have remained mostly elusive. The utilization of recently developed single-cell multimodal analysis platforms has started to answer this question. Emerging studies have elucidated several molecular networks that may explain diversity with respect to age or other factors. An elaborate interplay between inherent physical conditions and environmental conditions has been demonstrated. Furthermore, the importance of modifications by the epigenome resulting in transcriptome variation among individuals is gradually being revealed. Accordingly, epigenomes and transcriptomes are direct indicators of the medical history and dynamic interactions with environmental factors. Coronavirus disease 2019 (COVID-19) has recently become one of the most remarkable examples of the necessity of in-depth analyses of diverse responses with respect to various factors to improve treatment in severe cases and to prevent viral transmission from asymptomatic carriers. In fact, determining why some patients develop serious symptoms is still a pressing issue. Here, we review the current "state of the art" in single-cell analytical technologies and their broad applications to healthy individuals and representative diseases, including COVID-19.

9.
Pharmaceutics ; 14(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36015205

ABSTRACT

An automated compounding device can be a useful tool for the rapid and accurate production of small batches for personalized medicine as well as for clinical batches. A novel electronic liquid dispensing system (ELDS) was investigated to produce hard capsules with individualized dose strengths. An ethanol-based solvent system containing the antihypertensive enalapril maleate was extruded through a cannula into prefilled capsules. The capsules were prefilled with a powder bed of mesoporous silica (Syloid 244 FP) or synthetic dibasic calcium phosphate anhydrous (Fujicalin). The dosing accuracy as well as content uniformity of ELDS was compared with manual preparation using a Hamilton syringe (HS). Both methods met the pharmacopeia criteria for all formulations with an acceptance value (AV) less than 15. Drug adherence to the capsule shells was also investigated. A recovery rate of 98% of enalapril maleate showed almost no drug loss, but the appropriateness of the new dispensing method.

10.
J Cancer Res Clin Oncol ; 148(3): 673-684, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33864522

ABSTRACT

BACKGROUND: Establish patient-derived tumor xenograft (PDTX) from advanced GICs and assess the clinical value and applicability of PDTX for the treatment of advanced gastrointestinal cancers. METHODS: Patients with advanced GICs were enrolled in a registered multi-center clinical study (ChiCTR-OOC-17012731). The performance of PDTX was evaluated by analyzing factors that affect the engraftment rate, comparing the histological consistency between primary tumors and tumorgrafts, examining the concordance between the drug effectiveness in PDTXs and clinical responses, and identifying genetic variants and other factors associated with prognosis. RESULTS: Thirty-three patients were enrolled in the study with the engraftment rate of 75.8% (25/33). The success of engraftment was independent of age, cancer types, pathological stages of tumors, and particularly sampling methods. Tumorgrafts retained the same histopathological characteristics as primary tumors. Forty-nine regimens involving 28 drugs were tested in seventeen tumorgrafts. The median time for drug testing was 134.5 days. Follow-up information was obtained about 10 regimens from 9 patients. The concordance of drug effectiveness between PDTXs and clinical responses was 100%. The tumor mutation burden (TMB) was correlated with the effectiveness of single drug regimens, while the outgrowth time of tumorgrafts was associated with the effectiveness of combined regimens. CONCLUSION: The engraftment rate in advanced GICs was higher than that of other cancers and meets the acceptable standard for applying personalized therapeutic strategies. Tumorgrafts from PDTX kept attributes of the primary tumor. Predictions from PDTX modeling closely agreed with clinical drug responses. PDTX may already be clinically applicable for personalized medication in advanced GICs.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Gastrointestinal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Adult , Aged , Animals , Female , Follow-Up Studies , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Humans , Male , Mice, Inbred NOD , Middle Aged , Precision Medicine , Prognosis , Prospective Studies , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Pharmaceutics ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684007

ABSTRACT

Vaginal drug delivery systems can provide a long-term and constant liberation of the active pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast manufacturing of complex, personalized medications. 3D printing can be an excellent alternative instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type II Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied jellifying agents and the API's. All samples were considered non-similar based on the pairwise comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed vaginal rings filled with jellified metronidazole.

12.
Rev Med Liege ; 76(4): 292-296, 2021 Apr.
Article in French | MEDLINE | ID: mdl-33830695

ABSTRACT

In the first article we described how pharmaceutical industry is facing major challenges in general. In this second part, we intend to focus on new concepts and developments, which might sound «futuristic¼ for most of us. However, this seems definitely «work in rapid progress¼, especially concerning, for example, the use of the pharmacogenome (prerequisite for treatment personalization), «clever¼ medication, 3D printing and labelling with QR code. The future is bright but we cannot omit to quote the ever growing role of incumbent actors, both in the fields of medication production as well as distribution.


Dans la première partie, nous avons évoqué les changements généraux auxquels l'industrie pharmaceutique doit faire face. Dans cette seconde partie, nous passons en revue quelques concepts et développements qui, pour beaucoup d'entre nous, semblent «futuristes¼, mais dont les grandes lignes se dessinent déjà. On évoquera brièvement quelques exemples comme l'analyse du pharmacogénome (antichambre pour la prescription personnalisée), les médicaments «intelligents¼, l'impression 3D des médicaments et leurs marquages. On ne peut pas parler de l'avenir de l'industrie pharmaceutique, sans évoquer le rôle grandissant de nouveaux acteurs dans les chaines de production et de distribution.


Subject(s)
Precision Medicine , Technology, Pharmaceutical , Humans , Printing, Three-Dimensional
13.
Sheng Wu Gong Cheng Xue Bao ; 37(2): 395-403, 2021 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-33645143

ABSTRACT

Breast cancer is the most common cancer in women. At present, the in vivo model and traditional cell culture are mainly used in breast cancer researches. However, as high as 90% clinical trials are failed for drugs explored by the above two methods, due to the inherent species differences between humans and animals, as well as the differences in the tissue structure between organs and cells. Therefore, organoid three-dimensional culture is emerging. As a new tumor research model, organoid, a three-dimensional cell complex with spatial structure, has broad application prospects, such as precision medicine, organ transplantation, establishment of refractory disease model, gene therapy and drug research and development. Therefore, organoid is considered as one of the ideal carriers for life science research in the future. Breast cancer, a heterogeneous disease with complex phenotypes, has a low survival rate. Breast cancer organoid can reproduce many key features of human breast cancer, thus, the construction of organoid biological library of breast cancer will provide a new platform for studying the occurrence, development, metastasis and drug resistance mechanism of breast cancer. In this review, we systematically introduce the culture conditions of organoids and their application in breast cancer related research, and the application prospect of organoids.


Subject(s)
Breast Neoplasms , Organoids , Animals , Cell Culture Techniques , Female , Humans , Precision Medicine , Research
14.
Curr Drug Targets ; 22(16): 1901-1914, 2021.
Article in English | MEDLINE | ID: mdl-33494666

ABSTRACT

Three Dimensional (3D) printing is a promising method for quick prototyping and manufacturing of any material. It is similar to photocopy or printing, where the new materials are formed on layers (3D) like their mother component. Following its growth and advancement in the 1980s, its application in pharmaceuticals is still limited. It has become one of the most innovative and influential tools serving as a technology for developing dosage forms from the last decade. The potential of 3D printing to produce drugs for precise measurement customized to specific patients' needs has shown the possibility of developing personalized medicines to novel dosage forms. The breakthrough allows the clear perception of the dosage structures on different shapes, sizes, surfaces and the associated challenges in delivering them by using such designed conditions. There are different difficulties related to the correct utilization of 3D imprinting in the pharmaceuticals, which have a strong impact on the scope of this technology. Recent advancements in the field of 3D printing technology used in the pharmaceutical industry mainly focused on different techniques for the fabrication of different dosage forms. The Food and Drug Administration's (FDA) recent approval of the first 3D prescription highlights possibilities for 3D printing innovation in the field of pharmaceutical drug supply. This analysis assesses 3D printing advancement possibilities, particularly in the area of custom prescriptions. This technology can be regarded as the future produced on demand, low-cost solid dosage forms and helps minimize side effects due to overdose.


Subject(s)
Printing, Three-Dimensional , Technology, Pharmaceutical , Dosage Forms , Humans , Precision Medicine
15.
Chinese Journal of Biotechnology ; (12): 395-403, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878570

ABSTRACT

Breast cancer is the most common cancer in women. At present, the in vivo model and traditional cell culture are mainly used in breast cancer researches. However, as high as 90% clinical trials are failed for drugs explored by the above two methods, due to the inherent species differences between humans and animals, as well as the differences in the tissue structure between organs and cells. Therefore, organoid three-dimensional culture is emerging. As a new tumor research model, organoid, a three-dimensional cell complex with spatial structure, has broad application prospects, such as precision medicine, organ transplantation, establishment of refractory disease model, gene therapy and drug research and development. Therefore, organoid is considered as one of the ideal carriers for life science research in the future. Breast cancer, a heterogeneous disease with complex phenotypes, has a low survival rate. Breast cancer organoid can reproduce many key features of human breast cancer, thus, the construction of organoid biological library of breast cancer will provide a new platform for studying the occurrence, development, metastasis and drug resistance mechanism of breast cancer. In this review, we systematically introduce the culture conditions of organoids and their application in breast cancer related research, and the application prospect of organoids.


Subject(s)
Animals , Female , Humans , Breast Neoplasms , Cell Culture Techniques , Organoids , Precision Medicine , Research
16.
Pharmaceutics ; 12(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764499

ABSTRACT

In this work, modified-release solid dosage forms were fabricated by adjusting geometrical properties of solid dosage forms through hot-melt 3D extrusion (3D HME). Using a 3D printer with air pressure driving HME system, solid dosage forms containing ibuprofen (IBF), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) were printed by simultaneous HME and 3D deposition. Printed solid dosage forms were evaluated for their physicochemical properties, dissolution rates, and floatable behavior. Results revealed that IBF content in the solid dosage form could be individualized by adjusting the volume of solid dosage form. IBF was dispersed as amorphous state with enhanced solubility and dissolution rate in a polymer solid dosage form matrix. Due to absence of a disintegrant, sustained release of IBF from printed solid dosage forms was observed in phosphate buffer at pH 6.8. The dissolution rate of IBF was dependent on geometric properties of the solid dosage form. The dissolution rate of IBF could be modified by merging two different geometries into one solid dosage form. In this study, the 3D HME process showed high reproducibility and accuracy for preparing dosage forms. API dosage and release profile were found to be customizable by modifying or combining 3D modeling.

17.
Polymers (Basel) ; 12(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825229

ABSTRACT

This research demonstrates the use of fill density as an effective tool for controlling the drug release without changing the formulation composition. The merger of hot-melt extrusion (HME) with fused deposition modeling (FDM)-based 3-dimensional (3-D) printing processes over the last decade has directed pharmaceutical research towards the possibility of printing personalized medication. One key aspect of printing patient-specific dosage forms is controlling the release dynamics based on the patient's needs. The purpose of this research was to understand the impact of fill density and interrelate it with the release of a poorly water-soluble, weakly acidic, active pharmaceutical ingredient (API) from a hydroxypropyl methylcellulose acetate succinate (HPMC-AS) matrix, both mathematically and experimentally. Amorphous solid dispersions (ASDs) of ibuprofen with three grades of AquaSolveTM HPMC-AS (HG, MG, and LG) were developed using an HME process and evaluated using solid-state characterization techniques. Differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), and polarized light microscopy (PLM) confirmed the amorphous state of the drug in both polymeric filaments and 3D printed tablets. The suitability of the manufactured filaments for FDM processes was investigated using texture analysis (TA) which showed robust mechanical properties of the developed filament compositions. Using FDM, tablets with different fill densities (20-80%) and identical dimensions were printed for each polymer. In vitro pH shift dissolution studies revealed that the fill density has a significant impact (F(11, 24) = 15,271.147, p < 0.0001) and a strong negative correlation (r > -0.99; p < 0.0001) with the release performance, where 20% infill demonstrated the fastest and most complete release, whereas 80% infill depicted a more controlled release. The results obtained from this research can be used to develop a robust formulation strategy to control the drug release from 3D printed dosage forms as a function of fill density.

18.
Front Physiol ; 11: 387, 2020.
Article in English | MEDLINE | ID: mdl-32528298

ABSTRACT

In the recent years, the progress in genetic analysis and next-generation sequencing technologies have opened up exciting landscapes for diagnosis and study of molecular mechanisms, allowing the determination of a particular mutation for individual patients suffering from hereditary red blood cell-related diseases or anemia. However, the huge amount of data obtained makes the interpretation of the results and the identification of the pathogenetic variant responsible for the diseases sometime difficult. Moreover, there is increasing evidence that the same mutation can result in varying cellular properties and different symptoms of the disease. Even for the same patient, the phenotypic expression of the disorder can change over time. Therefore, on top of genetic analysis, there is a further request for functional tests that allow to confirm the pathogenicity of a molecular variant, possibly to predict prognosis and complications (e.g., vaso-occlusive pain crises or other thrombotic events) and, in the best case, to enable personalized theranostics (drug and/or dose) according to the disease state and progression. The mini-review will reflect recent and future directions in the development of diagnostic tools for red blood cell-related diseases and anemias. This includes point of care devices, new incarnations of well-known principles addressing physico-chemical properties, and interactions of red blood cells as well as high-tech screening equipment and mobile laboratories.

19.
Drug Dev Ind Pharm ; 46(6): 869-877, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32364418

ABSTRACT

Food and Drug Administration (FDA) has approved a drug product (Spritam®) and many medical devices manufactured by three-dimensional printing (3DP) processes for human use. There is immense potential to print personalized medicines using 3DP. Many 3DP methods have been reported in the literature for pharmaceutical applications. However, selective laser sintering (SLS) printing has remained least explored for pharmaceutical applications. There are many advantages and challenges in adopting a SLS method for fabrication of personalized medicines. Solvent-free nature, availability of FDA approved thermoplastic polymer/excipients (currently used in hot melt-extrusion process), minimal/no post-processing step, etc. are some of the advantages of the SLS printing process. Major challenges of the technology are requirement of at least one thermoplastic component in the formulation and thermal stability of drug and excipients. This review provides an overview of the SLS printing method, excipient requirements, process monitoring, quality defects, regulatory aspects, and potential pharmaceutical applications.


Subject(s)
Pharmaceutical Preparations , Excipients/chemistry , Humans , Lasers , Printing, Three-Dimensional , Technology, Pharmaceutical
20.
Pharmaceutics ; 12(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32150899

ABSTRACT

The utilization of three-dimensional (3D) printing technologies as innovative manufacturing methods for drug products has recently gained growing interest. From a technological viewpoint, proof-of-concept on the performance of different printing methods already exist, followed by visions about future applications in hospital or community pharmacies. The main objective of this study was to investigate the perceptions of healthcare professionals in a tertiary university hospital about oral 3D-printed medicines for pediatric patients by means of focus group discussions. In general, the healthcare professionals considered many positive aspects and opportunities in 3D printing of pharmaceuticals. A precise dose as well as personalized doses and dosage forms were some of the advantages mentioned by the participants. Especially in cases of polypharmacy, incorporating several drug substances into one product to produce a polypill, personalized regarding both the combination of drug substances and the doses, would benefit drug treatments of several medical conditions and would improve adherence to medications. In addition to the positive aspects, concerns and prerequisites for the adoption of 3D printing technologies at hospital settings were also expressed. These perspectives are suggested by the authors to be focus points for future research on personalized 3D-printed drug products.

SELECTION OF CITATIONS
SEARCH DETAIL
...