Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
mSphere ; : e0048124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980067

ABSTRACT

The annual meeting for the Intermountain Branch was held in April 2024 on the campus of Brigham Young University. There were 127 branch members from Utah, Idaho, and Nevada who attended the meeting and were composed of undergraduate students, graduate or medical students, and faculty. This report highlights the diversity of, and the emerging trends in, the research conducted by American Society for Microbiology members in the Intermountain Branch.

2.
Int J Antimicrob Agents ; : 107276, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009289

ABSTRACT

Staphylococcus aureus and Pseudomonas aeruginosa co-infections in patients with cystic fibrosis (CF) are associated with disease severity. Their treatment is complicated by biofilm formation in the sticky mucus obstructing the airways. Using a dual species biofilm (P. aeruginosa/S. aureus) formed in artificial sputum medium, we investigated the activity of broad-spectrum antibiotics (meropenem, ceftazidime, ciprofloxacin, tobramycin) combined with a cocktail of two (bacterio)phages (PSP3 and ISP) proven active via spot tests and double agar on P. aeruginosa PAO1 and S. aureus ATCC 25923. At the highest tested concentrations (100 x MIC), antibiotics alone caused a 20-50% reduction in biomass and reduced S. aureus and P. aeruginosa CFU of 2.3 to 2.8 and 2.1 to 3.6 log10, respectively. Phages alone reduced biofilm biomass by 23% and reduced P. aeruginosa CFU of 2.1 log10, but did not affect S. aureus viability. Phages enhanced antibiotic effects on biomass and exhibited additive effects with antibiotics against P. aeruginosa, but not against S. aureus. Following inhibition of bacterial respiration by phages in planktonic cultures rationalized these observations by demonstrating that PSP3 was effective at multiplicities of infection (MOI) as low as 10-4 plaque forming units (PFU)/CFU on P. aeruginosa, but ISP, at higher MOI (> 0.1) against S. aureus. Thus, pre-screening inhibition of bacterial respiration by phages may assist in selecting those showing activity at sufficiently low titers to showcase anti-biofilm activity in this complex but clinically-relevant in vitro model of biofilm.

3.
Virus Res ; 347: 199435, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986742

ABSTRACT

The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.

5.
BMC Genomics ; 25(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824509

ABSTRACT

BACKGROUND: Despite Spirochetales being a ubiquitous and medically important order of bacteria infecting both humans and animals, there is extremely limited information regarding their bacteriophages. Of the genus Treponema, there is just a single reported characterised prophage. RESULTS: We applied a bioinformatic approach on 24 previously published Treponema genomes to identify and characterise putative treponemal prophages. Thirteen of the genomes did not contain any detectable prophage regions. The remaining eleven contained 38 prophage sequences, with between one and eight putative prophages in each bacterial genome. The prophage regions ranged from 12.4 to 75.1 kb, with between 27 and 171 protein coding sequences. Phylogenetic analysis revealed that 24 of the prophages formed three distinct sequence clusters, identifying putative myoviral and siphoviral morphology. ViPTree analysis demonstrated that the identified sequences were novel when compared to known double stranded DNA bacteriophage genomes. CONCLUSIONS: In this study, we have started to address the knowledge gap on treponeme bacteriophages by characterising 38 prophage sequences in 24 treponeme genomes. Using bioinformatic approaches, we have been able to identify and compare the prophage-like elements with respect to other bacteriophages, their gene content, and their potential to be a functional and inducible bacteriophage, which in turn can help focus our attention on specific prophages to investigate further.


Subject(s)
Genome, Bacterial , Genomics , Phylogeny , Prophages , Treponema , Prophages/genetics , Treponema/genetics , Treponema/virology , Genomics/methods , Computational Biology/methods , Genome, Viral , Bacteriophages/genetics , Bacteriophages/classification
6.
mSphere ; : e0045824, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926906

ABSTRACT

Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE: The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.

7.
Adv Sci (Weinh) ; : e2309972, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937990

ABSTRACT

Klebsiella pneumoniae, a major clinical pathogen known for causing severe infections, is attracting heightened attention due to its escalating antibiotic resistance. Phages are emerging as a promising alternative to antibiotics; however, their specificity to particular hosts often restricts their use. In this study, a collection of 114 phages is obtained and subjected to analysis against 238 clinical K. pneumoniae strains, revealing a spectrum of lytic behaviors. A correlation between putative tail protein clusters and lysis patterns leads to the discovery of six receptor-binding protein (RBP) clusters that determine host capsule tropism. Significantly, RBPs with cross-capsular lysis capabilities are identified. The newly-identified RBPs provide a toolbox for customizing phages to target diverse capsular types. Building on the toolbox, the engineered phages with altered RBPs successfully shifted and broadened their host capsule tropism, setting the stage for tunable phage that offer a precise and flexible solution to combat K. pneumoniae infections.

8.
Appl Environ Microbiol ; : e0080724, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940562

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.

9.
Plant Sci ; 346: 112164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908799

ABSTRACT

In the drug-resistance era, phage therapy has received considerable attention from worldwide researchers. Phage therapy has been given much attention in public health but is rarely applied to control plant diseases. Herein, we discuss phage therapy as a biocontrol approach against several plant diseases. The emergence of antibiotic resistance in agriculturally important pathogenic bacteria and the toxic nature of different synthetic compounds used to control microbes has driven researchers to rethink the century-old strategy of phage therapy''. Compared to other treatment strategies, phage therapy offers remarkable advantages such as high specificity, less chances of drug resistance, non-harmful nature, and benefit to soil microbial flora. The optimizations and protective formulations of phages are significant accomplishments; however, steps towards a better understanding of the physiologic characteristics of phages need to be preceded to commercialize their use. The future of phage therapy in the context of plant disease management is promising and could play a significant role in sustainable agriculture. Ongoing research will likely affirm the safety of phage therapy, ensuring that it does not harm non-target organisms, including beneficial soil microbes. Phage therapy could become vital in addressing global food security challenges, particularly in regions heavily impacted by plant bacterial diseases. Efforts to create formulations that enhance the stability and shelf-life of phages will be crucial, especially for their use in varied environmental conditions.


Subject(s)
Bacteriophages , Phage Therapy , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/therapy , Phage Therapy/methods , Bacteriophages/physiology
10.
Adv Mater ; : e2404411, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837809

ABSTRACT

Antibiotic-resistant pathogens have become a global public health crisis, especially biofilm-induced refractory infections. Efficient, safe, and biofilm microenvironment (BME)-adaptive therapeutic strategies are urgently demanded to combat antibiotic-resistant biofilms. Here, inspired by the fascinating biological structures and functions of phages, the de novo design of a spiky Ir@Co3O4 particle is proposed to serve as an artificial phage for synergistically eradicating antibiotic-resistant Staphylococcus aureus biofilms. Benefiting from the abundant nanospikes and highly active Ir sites, the synthesized artificial phage can simultaneously achieve efficient biofilm accumulation, extracellular polymeric substance (EPS) penetration, and superior BME-adaptive reactive oxygen species (ROS) generation, thus facilitating the in situ ROS delivery and enhancing the biofilm eradication. Moreover, metabolomics found that the artificial phage obstructs the bacterial attachment to EPS, disrupts the maintenance of the BME, and fosters the dispersion and eradication of biofilms by down-regulating the associated genes for the biosynthesis and preservation of both intra- and extracellular environments. The in vivo results demonstrate that the artificial phage can treat the biofilm-induced recalcitrant infected wounds equivalent to vancomycin. It is suggested that the design of this spiky artificial phage with synergistic "penetrate and eradicate" capability to treat antibiotic-resistant biofilms offers a new pathway for bionic and nonantibiotic disinfection.

11.
J Virol ; : e0066724, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829140

ABSTRACT

We report the discovery of a satellite-helper phage system with a novel type of dependence on a tail donor. The Acinetobacter baumannii satellite podovirus Aci01-2-Phanie (short name Phanie) uses a phage phi29-like DNA replication and packaging mode. Its linear 11,885 bp dsDNA genome bears 171 bp inverted terminal repeats (ITR). Phanie is related to phage DU-PP-III from Pectobacterium and to members of the Astrithrvirus from Salmonella enterica. Together, they form a new clade of phages with 27% to 30% identity over the whole genome. Detailed 3D protein structure prediction and mass spectrometry analyses demonstrate that Phanie encodes its capsid structural genes and genes necessary to form a short tail. However, our study reveals that Phanie virions are non-infectious unless they associate with the contractile tail of an unrelated phage, Aci01-1, to produce chimeric myoviruses. Following the coinfection of Phanie with myovirus Aci01-1, hybrid viral particles composed of Phanie capsids and Aci01-1 contractile tails are assembled together with Phanie and Aci01-1 particles.IMPORTANCEThere are few reported cases of satellite-helper phage interactions but many more may be yet undiscovered. Here we describe a new mode of satellite phage dependence on a helper phage. Phanie, like phage phi29, replicates its linear dsDNA by a protein primed-mechanism and protects it inside podovirus-like particles. However, these particles are defective, requiring the acquisition of the tail from a myovirus helper for production of infectious virions. The formation of chimeras between a phi29-like podovirus and a helper contractile tail reveals an unexpected association between very different bacterial viruses.

12.
Cell Host Microbe ; 32(6): 875-886.e9, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38754416

ABSTRACT

Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Plasmids/genetics , Klebsiella pneumoniae/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Transfer, Horizontal , Bacteriophages/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
13.
Trends Microbiol ; 32(7): 622-623, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38755022

ABSTRACT

Phages and plasmids are discrete mobile genetic elements (MGEs) with critical roles in gene dissemination across bacteria but limited scope for exchanging DNA between them. By investigating recent gene-sharing events, Pfeifer and Rocha describe how the hybrid elements phage-plasmids (P-Ps) promote gene flow between MGE types and evolve into new ones.


Subject(s)
Bacteria , Bacteriophages , Interspersed Repetitive Sequences , Plasmids , Bacteriophages/genetics , Plasmids/genetics , Bacteria/genetics , Bacteria/virology , Gene Transfer, Horizontal , Gene Flow , Evolution, Molecular
14.
ISME Commun ; 4(1): ycae064, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38800128

ABSTRACT

Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.

15.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675856

ABSTRACT

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Bacteriophages/genetics , Bacteriophages/classification , Viral Proteins/genetics , Viral Proteins/metabolism , Retroelements , Genetic Variation , Prophages/genetics , DNA, Viral/genetics , DNA Primase/genetics , DNA Primase/metabolism , Genomics/methods , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
16.
Curr Biol ; 34(8): 1739-1749.e7, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38599209

ABSTRACT

Prophages, viral sequences integrated into bacterial genomes, can be beneficial and costly. Despite the risk of prophage activation and subsequent bacterial death, active prophages are present in most bacterial genomes. However, our understanding of the selective forces that maintain prophages in bacterial populations is limited. Combining experimental evolution with stochastic modeling, we show that prophage maintenance and loss are primarily determined by environmental conditions that alter the net fitness effect of a prophage on its bacterial host. When prophages are too costly, they are rapidly lost through environment-specific sequences of selective sweeps. Conflicting selection pressures that select against the prophage but for a prophage-encoded accessory gene can maintain prophages. The dynamics of prophage maintenance additionally depend on the sociality of this accessory gene. Prophage-encoded genes that exclusively benefit the lysogen maintain prophages at higher frequencies compared with genes that benefit the entire population. That is because the latter can protect phage-free "cheaters," reducing the benefit of maintaining the prophage. Our simulations suggest that environmental variation plays a larger role than mutation rates in determining prophage maintenance. These findings highlight the complexity of selection pressures that act on mobile genetic elements and challenge our understanding of the role of environmental factors relative to random chance events in shaping the evolutionary trajectory of bacterial populations. By shedding light on the key factors that shape microbial populations in the face of environmental changes, our study significantly advances our understanding of the complex dynamics of microbial evolution and diversification.


Subject(s)
Prophages , Prophages/genetics , Prophages/physiology , Selection, Genetic , Mutation , Environment , Lysogeny/genetics , Evolution, Molecular
17.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38678007

ABSTRACT

While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.


Subject(s)
Bacteria , Bacteriophages , Microbiota , Rhizosphere , Soil Microbiology , Bacteriophages/genetics , Bacteria/virology , Bacteria/genetics , Gene Transfer, Horizontal , Plants/microbiology , Plants/virology , Ecosystem
18.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38591854

ABSTRACT

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Subject(s)
Bacteriophages , Enterococcus faecium , Host Specificity , Vancomycin-Resistant Enterococci , Enterococcus faecium/drug effects , Bacteriophages/genetics , Vancomycin-Resistant Enterococci/drug effects , Phage Therapy/methods , Gram-Positive Bacterial Infections/microbiology , Vancomycin Resistance , Vancomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology
19.
Microbiol Resour Announc ; 13(6): e0130023, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38651926

ABSTRACT

The isolation and characterization of additional phages is crucial for adding reliable viral sequences with relevant biological information to viral databases. In this study, we present the complete genomes of two Arthrobacter phages obtained from different soil samples.

20.
Cell Biochem Funct ; 42(3): e4022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655589

ABSTRACT

Over the years, the administration of antibiotics for the purpose of addressing bacterial infections has become increasingly challenging due to the increased prevalence of antimicrobial resistance exhibited by various strains of bacteria. Multidrug-resistant (MDR) bacterial species are rising due to the unavailability of novel antibiotics, leading to higher mortality rates. With these conditions, there is a need for alternatives in which phage therapy has made promising results. Phage-derived endolysins, phage cocktails, and bioengineered phages are effective and have antimicrobial properties against MDR and extensively drug-resistant strains. Despite these, it has been observed that phages can give antimicrobial activity to more than one bacterial species. Thus, phage cocktail against resistant strains provides broad spectrum treatment and magnitude of effectivity, which is many folds higher than antibiotics. Many commercially available endolysins such as Staphefekt SA.100, Exebacase (CF-301), and N-Rephasin®SAL200 are used in biofilm penetration and treating plant diseases. The role of CMP1 phage endolysin in transgenic tomato plants in preventing Clavibacter michiganensis infection and the effectiveness of phage in protecting Atlantic salmon from vibriosis have been reported. Furthermore, phage-derived endolysin therapy, such as TSPphg phage exogenous treatment, can aid in disrupting cell walls, leading to bacterial cell lysis. As animals in aquaculture and slaughterhouses are highly susceptible to bacterial infections, effective phage therapy instead of antibiotics can help treat poultry animals, preserve them, and facilitate disease-free trade. Using bioengineered phages and phage cocktails enhances the effectiveness by providing a broad spectrum of phages and target specificity. Research is currently being conducted on clinical trials to confirm the efficacy of engineered phages and phage cocktails in humans. Although obtaining commercial approval may be time-consuming, it will be beneficial in the postantibiotic era. This review provides an overview of the significance of phage therapy as a potential alternative to antibiotics in combating resistant bacterial strains and its application to various fields and emphasizes the importance of safeguarding and ensuring treatment efficacy.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Endopeptidases , Phage Therapy , Anti-Bacterial Agents/pharmacology , Humans , Animals , Bacterial Infections/therapy , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacteria/drug effects , Bacteria/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...