Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
1.
Eur J Pharm Sci ; 200: 106844, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977205

ABSTRACT

Repaglinide (RPG) belongs to the class of drugs known as meglitinides and is used for improving and maintaining glycemic control in the treatment of patients with Type 2 diabetes. RPG is a Class II drug (BCS) because of its high permeability and low water solubility. It also undergoes hepatic first-pass metabolism. The oral bioavailability of RPG is low (about 56 %) due to these drawbacks. Our aim in this study is to prepare two different nano-sized drug carrier systems containing RPG (nanoparticle: RPG-PLGA-Zein-NPs or nanoemulsion: RPG-NE) and to carry out a pharmacokinetic study for these formulations. We prepared NPs using PLGA and Zein. In addition, a single NE formulation was developed using Tween 80 and Pluronic F68 as surfactants and Labrasol as co-surfactant. The droplet size values of the blank-NE and RPG-NE formulations were found to be less than 120 nm. The mean particle sizes of blank-Zein-PLGA-NPs and RPG-Zein-PLGA-NPs were less than 260 nm. The Cmax and tmax values of RPG-Zein-PLGA-NPs and RPG-NE (523 ± 65 ng/mL and 770 ± 91 ng/mL; 1.41 ± 0.46 h and 1.61 ± 0.37 h, respectively) were meaningfully higher than those of free RPG (280 ± 33 ng/mL; 0.72 ± 0.28 h) (p < 0.05). The AUC0-∞ values calculated for RPG-Zein-PLGA-NPs and RPG-NE were approximately 4.04 and 5.05 times higher than that calculated for free RPG. These nanosized drug delivery systems were useful in increasing the oral bioavailability of RPG. Moreover, the NE formulation was more effective than the NP formulation in improving the oral bioavailability of RPG (p < 0.05).

2.
Luminescence ; 39(7): e4812, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965972

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a neurological condition frequently identified in early childhood and frequently co-occurs with other neuropsychological disorders, particularly autism. Viloxazine hydrochloride, a non-stimulant medication, has recently gained approval for treating attention-deficit hyperactivity disorder. This paper describes the first spectrofluorimetric method for precisely measuring the content of viloxazine in pharmaceutical capsules and rat plasma. This method employed NBD-Cl (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole) as a fluorescent probe, which transformed viloxazine in an alkaline environment into a remarkably sensitive fluorescent adduct. Upon excitation at 476 nm, this adduct becomes detectable at a wavelength of 536 nm. The method was validated using ICH criteria, revealing acceptable linearity across a concentration range of 200-2000 ng/ml and high sensitivity with LOD and LOQ values of 46.774 ng/ml and 141.741 ng/ml, respectively. This method was adeptly applied in a pharmacokinetic study of viloxazine in rat plasma following a single oral dose (10 mg/kg), yielding a mean peak plasma concentration (Cmax) of 1721 ng/ml, achieved within 1.5 h. Furthermore, the environmental impact of the technique was assessed using two greenness assessment tools, revealing a notable level of eco-friendliness and sustainability.


Subject(s)
Fluorescent Dyes , Spectrometry, Fluorescence , Viloxazine , Animals , Rats , Fluorescent Dyes/chemistry , Viloxazine/chemistry , Viloxazine/pharmacokinetics , Viloxazine/blood , Male , Molecular Structure , 4-Chloro-7-nitrobenzofurazan/chemistry , Administration, Oral
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124793, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981289

ABSTRACT

Atomoxetine is a psychostimulant drug used for the treatment of attention-deficit/hyperactivity disorder (ADHD) symptoms in people with autism. Herein, eco-friendly fluorescent carbon quantum dots (CQDs) were synthesized using black-eyed pea beans and characterized for the purpose of quantifying atomoxetine in pharmaceutical capsules and human plasma. The selectivity of these CQDs towards atomoxetine was improved by functionalizing their surface with an atomoxetine-tetraphenylborate ion complex. The quantification of atomoxetine is based on measuring the fluorescence quenching of the functionalized CQDs in response to varying concentrations of atomoxetine. The Stern-Volmer plot was employed to investigate the mechanism through which atomoxetine quenches the fluorescence intensity of the CQDs. The outcomes indicated a dynamic quenching mechanism. The applied method was optimized and validated in compliance with ICH requirements, resulting in excellent linearity across the concentration range of 50-800 ng/mL. The developed method was successfully used to quantify atomoxetine in pharmaceutical dosage form and human plasma with acceptable accuracy and precision outcomes. In addition, the method was applied for clinical pharmacokinetic study of atomoxetine in the plasma of children diagnosed with both autism and ADHD. Atomoxetine was rapidly absorbed after a single oral dose of 10 mg, reaching maximum concentration within two hours and having a half-life (t1/2) of 3.11 h. Moreover, the method demonstrates a notable degree of eco-friendliness, as evidenced by two greenness evaluation metrics; Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE).

4.
Pharm Dev Technol ; : 1-9, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980085

ABSTRACT

Doxepin, a Class-I Biopharmaceutics Drug Disposition Classification System (BDDCS) drug, exhibits poor bioavailability due to extensive first-pass metabolism. This research focuses on enhancing the delivery of doxepin by formulating nanostructured lipid carriers (NLCs) through the utilization of the Box-Behnken Design methodology. These optimized NLCs are intended for intranasal administration, with the ultimate goal of improving nose-to-brain drug delivery. NLCs were formulated using a high-speed homogenization technique. The optimized batch had a small particle size (75.80 ± 5.48 nm, PDI = 0.286), high entrapment efficiency (94.10 ± 0.16%), and sustained ex vivo release (82.25 ± 4.61% at 24 h). Characterization studies confirmed the conversion of doxepin from a crystalline to an amorphous state with uniform distribution in the lipid matrix. In vivo pharmacokinetic studies in rats showed significantly higher doxepin concentration in the brain tissue (Cmax = 16.77 µg/g, tmax = 30 min) after intranasal administration compared to intravenous administration (Cmax = 2.53 µg/g, tmax = 6 h). High-drug targeting efficiency (DTE = 284.3%) and direct transport percentage (DTP = 64.8%) suggested direct penetration of NLCs in the brain via olfactory and trigeminal pathways. In conclusion, the study highlights the potential of NLCs to improve the bioavailability of doxepin through nose-to-brain delivery and thereby potentially enable the treatment of neurological disorders.

5.
Article in English | MEDLINE | ID: mdl-38843708

ABSTRACT

Non-small cell lung cancer (NSCLC) is a significant subtype of lung cancer, and poses a dangerous global threat. One of the current approaches of NSCLC treatment is a combination therapy of adagrasib and pembrolizumab. Accurate monitoring of these drug concentrations in biological fluids is critical for treatment efficacy. Since no method was reported for simultaneous estimation of these drugs, this study focuses on the development of a validated LC-MS/MS bioanalytical method for simultaneous quantification of Adagrasib and Pembrolizumab in rat plasma. The analytes were extracted from the biological matrix through liquid-liquid extraction techniques using acetonitrile as extraction solvent. The analytes were separated on a Waters X-bridge phenyl C18 column, with a mixture of acetonitrile: 0.1 % TFA in water (50: 50 v/v) as mobile phase at an isocratic flow rate of 1.0 mL/min with a runtime of about 5 min. Adagrasib (m/z 605.12 → 201.62), Pembrolizumab (m/z 146.32 → 85.15), and Sotorasib (m/z 561.59 → 218.92) were determined by recording the mass spectra through multiple reaction monitoring in positive mode. The method was validated according to USFDA guidelines. The results demonstrate satisfactory linearity with an r2 value of 0.9998 in the ranges of 40-800 and 10-200 ng/mL, accuracy with mean percentage recovery of 95.22-98.59 % and 96.98-98.57 %, precision indicated with %RSD ranged between 0.39-1.91 % and 0.85-9.03 % for Adagrasib and Pembrolizumab respectively, and other key parameters. The developed method can determine the pharmacokinetic parameters to indicate the efficacy and safety of the drugs, and also can quantify selected drugs simultaneously in biological samples.


Subject(s)
Antibodies, Monoclonal, Humanized , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/blood , Antibodies, Monoclonal, Humanized/chemistry , Animals , Rats , Reproducibility of Results , Male , Chromatography, Liquid/methods , Linear Models , Limit of Detection , Rats, Sprague-Dawley , Liquid-Liquid Extraction/methods , Liquid Chromatography-Mass Spectrometry
6.
Curr Drug Metab ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38910277

ABSTRACT

Piperine (amide alkaloid) derived from pepper is globally utilized in diverse conventional and traditional systems of medicine. The co-administration of piperine has been observed to induce subtle modifications in the absorption, membrane transport, and drug metabolism of several high-efficacy medicines. The occurrence of medication interactions might have a notable impact on the pharmacokinetic parameters, resulting in either a favorable or unfavorable pharmacological effect. This comprehensive pharmacokinetic drug interaction evaluation of piperine encompasses a total of 34 scholarly articles (specific for pharmacokinetic interactions), consisting of 62 studies (56 preclinical studies and 6 clinical investigations). In this study, we propose that piperine has the ability to increase the bioavailability and bioactive molecules of a natural origin of a variety of medications, making it an effective bioenhancer. By enhancing bioavailability, piperine can reduce the required dosage, lower drug costs, minimize the occurrence of drug resistance, and mitigate dose-dependent side effects associated with various medications such as ciprofloxacin, ampicillin, metronidazole carbamazepine, curcumin, and oxytetracycline. However, a limited number of published studies have indicated a reduction in bioavailability following oral administration of isoniazid, puerarin, diltiazem, desacetyldiltiazem, and magnolol in combination with piperine or pepper/Trikatu (containing piperine majorly). Several other critical studies have demonstrated that there is no significant variation in pharmacokinetic characteristics along with piperine. The medications containing piperine have led to significant modifications in their pharmacokinetic properties, finally yielding advantageous outcomes for drugs with low bioavailability. Additionally, these alterations have resulted in reduced side effects and extended half-life (T1/2) for specific drugs.

7.
Int J Pharm ; 658: 124200, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38710298

ABSTRACT

This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.


Subject(s)
Amikacin , Anti-Bacterial Agents , Biological Availability , Chitosan , Lipids , Liposomes , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Male , Administration, Oral , Chitosan/chemistry , Amikacin/pharmacokinetics , Amikacin/administration & dosage , Amikacin/chemistry , Lipids/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Rats , Rats, Sprague-Dawley , Intestinal Absorption , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacokinetics , Rats, Wistar
8.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731409

ABSTRACT

As a powerful imidazole antifungal drug, ketoconazole's low solubility (0.017 mg/mL), together with its odor and irritation, limited its clinical applications. The inclusion complex of ketoconazole with randomly methylated ß-cyclodextrin was prepared by using an aqueous solution method after cyclodextrin selection through phase solubility studies, complexation methods, and condition selection through single factor and orthogonal strategies. The complex was confirmed by FTIR (Fourier-transform infrared spectroscopy), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), SEM (scanning electron microscope images), and NMR (Nuclear magnetic resonance) studies. Through complexation, the water solubility of ketoconazole in the complex was increased 17,000 times compared with that of ketoconazole alone, which is the best result so far for the ketoconazole water solubility study. In in vitro pharmacokinetic studies, ketoconazole in the complex can be 100% released in 75 min, and in in vivo pharmacokinetic studies in dogs, through the complexation, the Cmax was increased from 7.56 µg/mL to 13.58 µg/mL, and the AUC0~72 was increased from 22.69 µgh/mL to 50.19 µgh/mL, indicating that this ketoconazole complex can be used as a more efficient potential new anti-fungal drug.


Subject(s)
Antifungal Agents , Ketoconazole , Solubility , beta-Cyclodextrins , Ketoconazole/chemistry , Ketoconazole/pharmacokinetics , Ketoconazole/pharmacology , Ketoconazole/administration & dosage , beta-Cyclodextrins/chemistry , Animals , Antifungal Agents/pharmacology , Antifungal Agents/pharmacokinetics , Antifungal Agents/chemistry , Dogs , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Methylation
9.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710921

ABSTRACT

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Subject(s)
Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
10.
BMC Vet Res ; 20(1): 214, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769544

ABSTRACT

As an orally effective benzimidazole anthelmintic agent, fenbendazole was not only widely used in agriculture and animal husbandry to prevent and treat parasites, but also shows anti-cancer effects against several types of cancer, exhibits anti-cancer effects in paclitaxel and doxorubicin-resistant cancer cells. However, fenbendazole's poor in water solubility (0.3 µg/mL), limits its clinical applications. Even great efforts were made toward increasing its water solubility, the results were not significant to reach anti-cancer drug delivery requirement (5-10 mg/mL). Through single factor and orthogonal strategy, many complex conditions were designed and used to prepare the complexes, the inclusion complex with methyl-ß-cyclodextrin with 29.2 % of inclusion rate and 89.5% of inclusion yield can increase drug's water solubility to 20.21 mg/mL, which is the best result so far. Its structure was confirmed by differential scanning calorimetry, scanning electron microscopic image, 1D and 2D NMR spectra in D2O. In its in vitro pharmacokinetic study, fenbendazole was 75% released in 15 min., in its in vivo pharmacokinetic study, the bio-availabilities of fenbendazole, its major metabolic anthelmintic agent oxfendazole and its minor metabolic anthelmintic agent oxfendazole were increased to 138%, 149% and 169% respectively, which would allow for fewer drug doses to achieve the same therapeutic effect and suggest that the complex can be used as a potential anticancer agent.


Subject(s)
Fenbendazole , Solubility , beta-Cyclodextrins , Fenbendazole/pharmacokinetics , Fenbendazole/therapeutic use , Fenbendazole/chemistry , Animals , beta-Cyclodextrins/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Male , Anthelmintics/pharmacokinetics , Anthelmintics/chemistry , Anthelmintics/administration & dosage
11.
Eur J Pharm Sci ; 197: 106765, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608735

ABSTRACT

Lipid-based formulations (LBFs) are an enabling-formulation approach for lipophilic poorly water-soluble compounds. In LBFs, drugs are commonly pre-dissolved in lipids, and/or surfactants/cosolvents, hereby avoiding the rate-limiting dissolution step. According to the Lipid formulation classification system, proposed by Pouton in 2006, in type II LBFs a surfactant with an HLB-value lower than 12 is added to the lipids. If high drug doses are required, e.g. for preclinical toxicity studies, supersaturated LBFs prepared at elevated temperatures may be a possibility to increase drug exposure. In the present study, the impact of digestion on drug absorption in rats was studied by pre-dosing of the lipase inhibitor orlistat. The lipid chain length of the type II LBFs was varied by administration of a medium-chain- (MC) and a long-chain (LC)-based formulation. Different drug doses, both non-supersaturated and supersaturated, were applied. Due to an inherent precipitation tendency of cinnarizine in supersaturated LBFs, the effect of the addition of the precipitation inhibitor Soluplus® was also investigated. The pharmacokinetic results were also evaluated by multiple linear regression. In most cases LC-based LBFs did not perform better in vivo, in terms of a higher area under the curve (AUC0-24 h) and maximal plasma concentration (Cmax), than MC-based LBFs. The administration of supersaturated LBFs resulted in increased AUC0-24 h (1.5 - 3.2-fold) and Cmax (1.1 - 2.6-fold)-values when compared to the non-supersaturated equivalents. Lipase inhibition led to a decreased drug exposure in most cases, especially for LC formulations (AUC0-24 h reduced to 47 - 67%, Cmax to 46 - 62%). The addition of Soluplus® showed a benefit to drug absorption from supersaturated type II LBFs (1.2 - 1.7-fold AUC0-24 h), due to an increased solubility of cinnarizine in the formulation. Upon dose-normalization of the pharmacokinetic parameters, no beneficial effect of Soluplus® could be demonstrated.


Subject(s)
Cinnarizine , Lipids , Cinnarizine/chemistry , Cinnarizine/pharmacokinetics , Cinnarizine/administration & dosage , Animals , Male , Lipids/chemistry , Solubility , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/administration & dosage , Rats, Wistar , Orlistat/administration & dosage , Orlistat/pharmacokinetics , Intestinal Absorption , Rats , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Lipase/antagonists & inhibitors , Polyvinyls/chemistry , Chemical Precipitation , Surface-Active Agents/chemistry , Chemistry, Pharmaceutical/methods
12.
Biomed Pharmacother ; 174: 116610, 2024 May.
Article in English | MEDLINE | ID: mdl-38642503

ABSTRACT

Depression ranks as the fourth most prevalent global disease, with suicide incidents occurring at a younger age. Sulpiride (SUL), an atypical antidepressant drug acting as a dopamine D2 receptor antagonist and possessing anti-inflammatory properties, exhibits limited ability to penetrate the blood brain barrier (BBB). This weak penetration hampers its inhibitory effect on prolactin release in the pituitary gland, consequently leading to hyperprolactinemia. In order to enhance the central nervous system efficacy of sulpiride and reduce serum prolactin levels, we covalently linked sulpiride to VPALR derived from the nuclear DNA repair protein ku70. In vivo study on depressive mice using intraperitoneal injection of VPALR-SUL demonstrated a significant increase in struggle time and total distance compared to those treated with only sulpiride while also reducing serum prolactin concentration. The pharmacokinetic study results showed that VPALR-SUL prolonged half-life and increased bioavailability. In conclusion, VPALR-SUL exhibited potential for enhancing sulpiride transport across the BBB, augmenting its antidepressant effects, and reducing serum prolactin levels. This study laid a foundation for improving sulpiride delivery and developing novel antidepressants.


Subject(s)
Antidepressive Agents , Cell-Penetrating Peptides , Prolactin , Sulpiride , Animals , Prolactin/blood , Sulpiride/pharmacology , Antidepressive Agents/pharmacology , Mice , Male , Cell-Penetrating Peptides/pharmacology , Depression/drug therapy , Depression/blood , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Biological Availability
13.
Bioorg Chem ; 147: 107372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653152

ABSTRACT

Joining the global demand for the discovery of potent NSAIDs with minimized ulcerogenic effect, new pyrazole clubbed thiazole derivatives 5a-o were designed and synthesized. The new derivatives were initially evaluated for their analgesic activity. Eight compounds 5a, 5c, 5d, 5e, 5f, 5h, 5m, and 5o showed higher activity than Indomethacin (potency = 105-130 % vs. 100 %). Subsequently, they were picked for further evaluation of their anti-inflammatory activity, ulcerogenic liability as well as toxicological studies. Derivatives 5h and 5m showed a potential % edema inhibition after 3 h (79.39 % and 72.12 %, respectively), with a promising safety profile and low ulcer indices (3.80 and 3.20, respectively). The two compounds 5h and 5m were subjected to in vitro COX-1 and COX-2 inhibition assay. The candidate 5h showed nearly equipotent COX-1 inhibition (IC50 = 38.76 nM) compared to the non-selective reference drug Indomethacin (IC50 = 35.72 nM). Compound 5m expressed significant inhibitory activities and a higher COX-2 selectivity index (IC50 = 87.74 nM, SI = 2.05) in comparison with Indomethacin (SI = 0.52), with less selectivity than Celecoxib (SI = 8.31). Simulation docking studies were carried out to gain insights into the binding interaction of compounds 5h and 5m in the vicinity of COX-1 and COX-2 enzymes that illustrated the importance of pyrazole clubbed thiazole core in hydrogen bonding interactions. The thiazole motif of compounds 5h and 5m exhibited a well orientation toward COX-1 Arg120 key residue by hydrogen bonding interactions. Compound 5h revealed an additional arene-cation interaction with Arg120 that could rationalize its superior COX-1 inhibitory activity. Compounds 5h and 5m overlaid the co-crystallized ligand Celecoxib I differently in the active site of COX-2. Compound 5m showed an enhanced accommodation with binding energy of - 6.13 vs. - 1.70 kcal/mol of compounds 5h. The naphthalene ring of compound 5m adopted the Celecoxib I benzene sulfonamide region that is stabilized by hydrogen-arene interactions with the hydrophobic sidechains of the key residues Ser339 and Phe504. Further, the core structure of compound 5m, pyrazole clubbed thiazole, revealed deeper hydrophobic interactions with Ala513, Leu517 and Val509 residues. Finally, a sensitive and accurate UPLC-MS/MS method was developed for the simultaneous estimation of some selected promising pyrazole derivatives in rat plasma. Accordingly, compounds 5h and 5m were suggested to be promising potent analgesic and anti-inflammatory agents with improved safety profiles and a novel COX isozyme modulation activity.


Subject(s)
Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Cyclooxygenase 2 , Edema , Molecular Docking Simulation , Thiazoles , Animals , Male , Mice , Rats , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Edema/drug therapy , Edema/chemically induced , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis
14.
J Sep Sci ; 47(5): e2300923, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466147

ABSTRACT

Regorafenib is a small-molecule tyrosine kinase inhibitor with severe hepatotoxicity. It undergoes metabolism mainly by CYP3A4 to generate active metabolites regorafenib-N-oxide (M2) and N-desmethyl-regorafenib-N-oxide (M5). Wuzhi capsule (WZC) is an herbal preparation derived from Schisandra sphenanthera and is potentially used to prevent regorafenib-induced hepatotoxicity. This study aims to explore the effect of WZC on the pharmacokinetics of regorafenib in rats. An efficient and sensitive liquid chromatography-tandem mass spectrometry method was developed to quantitatively determine regorafenib and its main metabolites in rat plasma. The proposed method was applied to the pharmacokinetic study of regorafenib in rats, with or without WZC. Coadministration of regorafenib with WZC resulted in a prolonged mean residence time (MRT) of the parent drug but had no statistically significant difference in other pharmacokinetic parameters. While for the main metabolites of regorafenib, WZC decreased the area under the curve and maximum concentration (Cmax ), delayed the time to reach Cmax , and prolonged the MRT of M2 and M5. These results indicate that WZC delayed and inhibited the metabolism of regorafenib to M2 and M5 by suppressing CYP3A4. Our study provides implications for the rational use of the WZC-regorafenib combination in clinical practice.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP3A , Drugs, Chinese Herbal , Phenylurea Compounds , Pyridines , Animals , Rats , Tandem Mass Spectrometry , Chromatography, Liquid , Oxides
15.
Colloids Surf B Biointerfaces ; 237: 113862, 2024 May.
Article in English | MEDLINE | ID: mdl-38518556

ABSTRACT

Clozapine, which is widely used to treat schizophrenia, shows low bioavailability due to poor solubility and high first-pass metabolism. The study aimed to design clozapine-loaded carbon dots (CDs) to enhance availability of the clozapine to the brain via intranasal pathway. The CDs were synthesized by pyrolysis of citric acid and urea at 200 °C by hydrothermal technique and characterized by photoluminescence, transmission electron microscopy (TEM), X-ray Photoelectron Spectrometer (XPS), and Fourier transform infrared spectrum (FTIR). The optimized clozapine-loaded CDs (CLZ-CDs-1:3-200) showed a quasi-spherical shape (9-12 nm) with stable blue fluorescence. The CDs showed high drug solubilization capacity (1.5 mg drug in 1 mg/ml CDs) with strong electrostatic interaction with clozapine (drug loading efficiency = 94.74%). The ex vivo release study performed using nasal goat mucosa showed sustained release of clozapine (43.89%) from CLZ-CDs-1:3-200 for 30 h. The ciliotoxicity study (histopathology) confirmed no toxicity to the nasal mucosal tissues using CDs. In the rat model (in vivo pharmacokinetic study), when CDs were administrated by the intranasal route, a significantly higher concentration of clozapine in the brain tissue (Cmax = 58.07 ± 5.36 µg/g and AUCt (µg/h*g) = 105.76 ± 12.31) was noted within a short time (tmax = 1 h) compared to clozapine suspension administered by intravenous route (Cmax = 20.99 ± 3.91 µg/g, AUC t (µg/h*g) = 56.89 ± 12.31, and tmax = 4 h). The high value of drug targeting efficiency (DTE, 486%) index and direct transport percentage (DTP, 58%) indicates the direct entry of clozapine-CDs in the brain via the olfactory route. In conclusion, designed CDs demonstrated a promising dosage form for targeted nose-to-brain delivery of clozapine for the effective treatment of schizophrenia.


Subject(s)
Clozapine , Quantum Dots , Rats , Animals , Carbon/pharmacology , Administration, Intranasal , Brain/metabolism , Nasal Mucosa/metabolism
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124164, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38513315

ABSTRACT

Hypertension and hyperlipidemia frequently coexist and are correlated with elevated cardiovascular adverse outcomes. Fixed dose combination tablets containing antihypertensive and antihyperlipidemic drugs have the potential to improve patient compliance. Telmisartan and rosuvastatin fixed dose combination tablet has been recently formulated. This study provided the first fluorescence spectroscopic method for simultaneously quantifying telmisartan and rosuvastatin in tablet dosage form and plasma. The native fluorescence spectra of telmisartan and rosuvastatin completely overlapped, making direct measurement unachievable. However, through the implementation of synchronous fluorescence measurements of telmisartan and rosuvastatin at a Δλ = 60, distinct narrow bands were observed at 358 nm and 375 nm, respectively. Regrettably, the challenge of overlapping remained unresolved. Nevertheless, by converting these synchronous spectra into first-order spectra, the problem of overlapping was completely resolved. This conversion also allowed for the selective quantification of telmisartan and rosuvastatin at 374 nm and 358 nm, respectively. The validity of this method was confirmed in accordance with ICH guidelines, yielding satisfactory results in terms of the validation characteristics. The method demonstrated linear relationships between the response and the studied drugs concentrations in working range of 50-1000 ng/mL for telmisartan and 100-2000 ng/mL for rosuvastatin. The described methodology was applied for the pharmacokinetic study of telmisartan and rosuvastatin in rat plasma after a single oral dose of 4 mg/kg telmisartan and 50 mg/kg rosuvastatin. Pharmacokinetic analyses revealed a moderate drug-drug interaction between the two drugs, which was not considered to be clinically significant. Moreover, the described method was assessed in terms of sensitivity and environmental sustainability against three previously documented methods. The comparison effectively underscores the supremacy of the proposed technique over the documented techniques.


Subject(s)
Antihypertensive Agents , Humans , Animals , Rats , Rosuvastatin Calcium , Telmisartan/adverse effects , Fluorescence , Tablets , Spectrometry, Fluorescence
17.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543129

ABSTRACT

(1) Background: Polygonatum cyrtonema is a medicinal plant, and its polysaccharides are used for immunomodulation and the treatment of hyperglycemia. Investigation of the tissue distribution and pharmacokinetics of P. cyrtonema polysaccharide can further elucidate its pharmacological mechanisms. (2) Methods: A fluorescence-labeling approach using rhodamine B (RhB) as a fluorescent molecular probe was used for the quantitative assessment of the polysaccharide from dried P. cyrtonema (DPC1) samples, and the pharmacokinetics and tissue distribution of DPC1 were evaluated in mice after intraperitoneal or oral administration. (3) Results: DPC1 was successfully labeled with RhB, showing degrees of fluorescence labeling at 0.453% and 0.568% as determined by the ultraviolet and enzyme marker methods, respectively. DPC1-RhB was rapidly absorbed into the bloodstream after oral and intraperitoneal administration. Pharmacokinetic characteristics showed that oral administration and intraperitoneal administration were consistent with the features of a two-compartment model. (4) Conclusion: After administration, DPC1-RhB was primarily distributed in the tissues of the heart, spleen, and lung, indicating that the drug has a targeted effect on these tissues. Overall, the findings provide a comprehensive reference for the in vivo distribution of DPC1, together with a foundation for further elucidation of its pharmacological mechanisms and the development and application of DPC1 formulations.

18.
Turk J Pharm Sci ; 21(1): 52-61, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38529549

ABSTRACT

Objectives: Liquisolid tablets are an innovative approach to enhance the dissolution rate and, thereby, the bioavailability of therapeutic agents with poor aqueous solubility. Materials and Methods: The objective of the current research was to compare the bioavailability of the optimized formulation of the olanzapine (OLZ) liquisolid tablet with that of the marketed tablet (MT) by conducting pharmacokinetic and behavioral assessment studies. Ten formulations were designed using Kolliphor EL as a non-volatile solvent, and the respective tablets were prepared by the direct compression method. Results: Pre-compression studies of powders of all the formulations showed good/excellent flow properties and compressibility. The drug release profiles of liquisolid tablets were determined and compared with those of MT. Based on the in vitro results, K250 was considered as an optimized formulation and selected for further in vivo studies. AUC0-∞ value of K250 formulation was found to be 357.2 ± 35.5 ng.h.mL-1, which was higher than that of the MT (258.4 ± 29.9 ng.h.mL-1). The reduction in locomotor activity was enhanced remarkably in K250 compared with MTs at p < 0.05. The time periods taken to fall in the rotarod test were approximately equal in the experimental groups, which indicated the absence of extrapyramidal side effects. There was a remarkable decrease in the number of boxes covered in the open field test. Conclusion: Kolliphor EL was found to be a potential non-volatile solvent that can be used to produce liquisolid tablets of OLZ with improved flow, compressibility, dissolution, and bioavailability.

19.
AAPS PharmSciTech ; 25(2): 29, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302633

ABSTRACT

Progesterone, a female sex steroid hormone, is highly lipophilic, leading to poor oral bioavailability. This study aimed to develop a progesterone bilosome system to enhance its oral bioavailability and retain it longer in the body. Progesterone vesicles were formulated with bile salts by thin film hydration method to prevent enzymatic and bile acid degradation. The Box-Behnken experimental design was used to statistically optimize progesterone bilosomes by checking the effect of phosphatidylcholine, cholesterol, and sodium deoxycholate on vesicle size, zeta potential, and entrapment efficiency. The optimum batch showed 239.5 nm vesicle size, -28.2 mV zeta potential and 84.08% entrapment efficiency, respectively, which were significantly affected by phosphatidylcholine and cholesterol concentration. The successful incorporation of progesterone in the system was evident from ATR-FTIR analysis that revealed no sharp progesterone peaks in bilosomes. TEM analysis confirmed the spherical structure and uniform bilosome vesicles. Furthermore, the in vitro drug release of progesterone bilosomes revealed a sustained pattern exhibiting 90% drug release in 48 h. The pharmacokinetic study in female ovariectomized Wistar rats confirmed the 4.287- and 9.75-fold enhanced oral bioavailability of the progesterone bilosomes than marketed capsules and progesterone API, respectively. Therefore, progesterone bilosome formulation can be further explored for improved oral administration in chronic treatments.


Subject(s)
Liposomes , Progesterone , Rats , Animals , Female , Liposomes/chemistry , Rats, Wistar , Biological Availability , Administration, Oral , Cholesterol/chemistry , Phosphatidylcholines , Particle Size
20.
Article in English | MEDLINE | ID: mdl-38353837

ABSTRACT

Major depression is a prevalent disorder characterized by sadness, lack of interest or pleasure, interrupted sleep or food, and impaired concentration. Mirtazapine (MTZ), a tetracyclic antidepressant drug, is commonly used to treat moderate to severe depression. MTZ is classified as a BCS class II drug that has shown bioavailability of 50% due to extensive first-pass metabolism. The aim of this research is to develop a delivery platform with enhanced solubility and oral bioavailability of MTZ through formulating polymeric micelles modeled in a rapid release tablet. Mirtazapine loaded polymeric micelles (MTZ-PMs) were formulated to enhance the solubility. Solutol® HS 15 and Brij 58 were used as combined surfactants in a ratio of (20:1) to MTZ in addition to Transcutol® P as a penetration enhancer. The following in vitro tests were performed: particle size, PDI, zeta potential, solubility factor, stability index, and transmission electron microscopes. Afterward, MTZ-PMs were converted to dry free flowable powder through loading on the adsorptive surface of Aerosil 200; then, the powder mixture was directly compressed (MTZ-PMs-RRT) into 13 mm tablets. MTZ-PMs-RRT was further investigated using in vitro evaluation tests of the tablets, namely, weight variation, thickness, diameter, hardness, friability, disintegration time, drug content, and in vitro dissolution test, which complied with the pharmacopeial limits. The pharmacokinetic parameters of MTZ-PMs-RRT compared to Remeron® tablet were further investigated in rabbits. The results showed enhanced solubility of MTZ with improved percentage relative bioavailability to 153%. The formulation of MTZ in the form of MTZ-PMs-RRT successfully improved the solubility, stability, and bioavailability of MTZ using a simple and scalable manufacturing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...