Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
2.
Drug Des Devel Ther ; 17: 341-361, 2023.
Article in English | MEDLINE | ID: mdl-36776447

ABSTRACT

Background: Adaptogens are a class of medicinal plants that can nonspecifically enhance human resistance. Most of the plant adaptogens have relevant applications in dermatology, but there are still few studies related to their particular action and co-operative mechanisms in topical skin application. Methods: Plant adaptogens related articles and reviews that published between 1999 and 2022 were obtained from the Web of Science Core Collection database. Various bibliographic elements were collected, including the annual number of publications, countries/regions, and keywords. CiteSpace, a scientometric software, was used to conduct bibliometric analyses. Also, the patsnap global patent database was used to analyze the patent situation of plant adaptogens in the field of cosmetics up to 2021. Results: We found that the effects of plant adaptogens on skin diseases mainly involve atopic dermatitis, acne, allergic contact dermatitis, psoriasis, eczema, and androgenetic alopecia, etc. And the effects on skin health mainly involve anti-aging and anti-photoaging, anti-bacterial and anti-fungal, anti-inflammatory, whitening, and anti-hair loss, etc. Also, based on the results of patent analysis, it is found that the effects of plant adaptogens on skin mainly focus on aging retardation. The dermatological effects of plant adaptogens are mainly from Fabaceae Lindl., Araliaceae Juss. and Lamiaceae Martinov., and their mainly efficacy phytochemical components are terpenoids, phenolic compounds and flavonoids. Conclusion: The plant adaptogens can repair the skin barrier and maintain skin homeostasis by regulating the skin HPA-like axis, influencing the oxidative stress pathway to inhibit inflammation, and regulating the extracellular matrix (ECM) components to maintain a dynamic equilibrium, ultimately achieving the treatment of skin diseases and the maintenance of a healthy state.


Subject(s)
Dermatology , Plants, Medicinal , Skin Diseases , Humans , Plant Extracts/pharmacology , Aging , Skin Diseases/drug therapy
4.
Front Plant Sci ; 13: 951824, 2022.
Article in English | MEDLINE | ID: mdl-36061787

ABSTRACT

The genetic relationships among the species in Scutellaria genus remain unclear because of the variation in the number of species and complex trait. The usage of S. baicalensis and its four substitute medicinal species (S. amoena, S. hypericifolia, S. likiangensis, and S. viscidula) in traditional medicines make their specialized metabolism important in China, but interspecific genetic and chemical differences have rarely been reported for these species. In this study, the chloroplast genomes of four substitute species for S. baicalensis were assembled, and comparative and phylogenetic analyses were performed with these species and other Scutellaria relatives. In addition, metabolomics analyses were performed and the contents of the main active compounds were determined to reveal the interspecific chemical diversity of S. baicalensis and its four substitute species. The full lengths of their chloroplast genomes ranged from 151,574 to 151,816 bp with an average GC content of 38.34%, and a total of 113 genes were annotated. In the chloroplast genomes of S. baicalensis and its four substitutes, one hypervariable region (petA-psbL) is proposed as a potential DNA barcode. Phylogenetic analysis showed that the subdivision of the genus Scutellaria should be reconsidered. The metabolomics and content determination analyses showed that the four species exhibit a metabolism similar to that of S. baicalensis in different parts. Except for the roots of S. likiangensis, all parts of the substitute species showed high contents of baicalin. Genetic and chemical analyses of four substitute medicinal species for S. baicalensis were performed here for the first time, and their pharmacophylogenetic relationships were further explored, providing a scientific basis for the subsequent development of the medicinal value and resource utilization of Scutellaria.

5.
Front Plant Sci ; 13: 973197, 2022.
Article in English | MEDLINE | ID: mdl-36035721

ABSTRACT

The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.

6.
Chin J Integr Med ; 28(12): 1111-1126, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35809180

ABSTRACT

Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.


Subject(s)
Alkaloids , Benzylisoquinolines , Plants, Medicinal , Ranunculaceae , Humans , Plants, Medicinal/chemistry , Phylogeny , Ranunculaceae/genetics , Medicine, Traditional , Biodiversity
7.
Chin J Integr Med ; 28(6): 567-574, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33170942

ABSTRACT

Medicinal plants have provided numerous medicinal active ingredients for thousands of years and these ingredients have been used in Chinese medicine (CM) and traditional pharmacologies worldwide. Recently, the exploitation and utilisation of medicinal plant resources has increased significantly. The results of the studies have led to the identification of many active components, such as steroidal alkaloids, saponins, terpenoids, and glycosides, in various medicinal plants with different evolutionary levels. Moreover, research on the chemical classification, molecular phylogeny, and pharmacological activity of medicinal plants is increasing in popularity. Pharmacophylogeny is an interdisciplinary topic that studies the correlation between plant phylogeny, chemical composition, and curative effects (pharmacological activity and the traditional curative effect) of medicinal plants. In addition, it provides the basic tools to enable research and development of CM resources. This literature review, based on the genetic relationship between phytogroup and species, highlights the formation process, research content, applications, and future directions of pharmacophylogeny.


Subject(s)
Alkaloids , Plants, Medicinal , Saponins , Glycosides , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Terpenes
8.
Article in English | WPRIM (Western Pacific) | ID: wpr-939772

ABSTRACT

Medicinal plants have provided numerous medicinal active ingredients for thousands of years and these ingredients have been used in Chinese medicine (CM) and traditional pharmacologies worldwide. Recently, the exploitation and utilisation of medicinal plant resources has increased significantly. The results of the studies have led to the identification of many active components, such as steroidal alkaloids, saponins, terpenoids, and glycosides, in various medicinal plants with different evolutionary levels. Moreover, research on the chemical classification, molecular phylogeny, and pharmacological activity of medicinal plants is increasing in popularity. Pharmacophylogeny is an interdisciplinary topic that studies the correlation between plant phylogeny, chemical composition, and curative effects (pharmacological activity and the traditional curative effect) of medicinal plants. In addition, it provides the basic tools to enable research and development of CM resources. This literature review, based on the genetic relationship between phytogroup and species, highlights the formation process, research content, applications, and future directions of pharmacophylogeny.


Subject(s)
Alkaloids , Glycosides , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Saponins , Terpenes
9.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4344-4359, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581037

ABSTRACT

The Solanaceae plants distributed in China belong to 105 species and 35 varietas of 24 genera. Some medicinal plants of Solanaceae are rich in tropane alkaloids(TAs), which have significant pharmacological activities. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, pharmacological activities, and biosynthetic pathways of TAs in Solanaceous plants were summarized. Besides, the phylogeny of medicinal plants belonging to Solanaceae was visualized by network diagram. Fourteen genera of Solanaceae plants in China contain TAs and have medical records. TAs mainly exist in Datura, Anisodus, Atropa, Physochlaina, and Hyoscyamus. The TAs-containing species were mainly concentrated in Southwest China, and the content of TAs was closely related to plant distribution area and altitude. The Solanaceae plants containing TAs mainly have antispasmodic, analgesic, antiasthmatic, and antitussive effects. Modern pharmacological studies have proved the central sedative, pupil dilating, glandular secretion-inhibiting, and anti-asthma activities of TAs. These pharmacological activities provide a reasonable explanation for the traditional therapeutic efficacy of tropane drugs. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, and modern pharmacological activities of TAs-containing species in Solanaceae were analyzed for the first time. Based on these data, the genetic relationship of TAs-containing Solanaceae species was preliminarily discussed, which provided a scientific basis for the basic research on TAs-containing solanaceous species and was of great significance for the development of natural medicinal plant resources containing TAs.


Subject(s)
Plants, Medicinal , Solanaceae , Biosynthetic Pathways , Phylogeny , Solanaceae/genetics , Tropanes
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888133

ABSTRACT

The Solanaceae plants distributed in China belong to 105 species and 35 varietas of 24 genera. Some medicinal plants of Solanaceae are rich in tropane alkaloids(TAs), which have significant pharmacological activities. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, pharmacological activities, and biosynthetic pathways of TAs in Solanaceous plants were summarized. Besides, the phylogeny of medicinal plants belonging to Solanaceae was visualized by network diagram. Fourteen genera of Solanaceae plants in China contain TAs and have medical records. TAs mainly exist in Datura, Anisodus, Atropa, Physochlaina, and Hyoscyamus. The TAs-containing species were mainly concentrated in Southwest China, and the content of TAs was closely related to plant distribution area and altitude. The Solanaceae plants containing TAs mainly have antispasmodic, analgesic, antiasthmatic, and antitussive effects. Modern pharmacological studies have proved the central sedative, pupil dilating, glandular secretion-inhibiting, and anti-asthma activities of TAs. These pharmacological activities provide a reasonable explanation for the traditional therapeutic efficacy of tropane drugs. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, and modern pharmacological activities of TAs-containing species in Solanaceae were analyzed for the first time. Based on these data, the genetic relationship of TAs-containing Solanaceae species was preliminarily discussed, which provided a scientific basis for the basic research on TAs-containing solanaceous species and was of great significance for the development of natural medicinal plant resources containing TAs.


Subject(s)
Biosynthetic Pathways , Phylogeny , Plants, Medicinal , Solanaceae/genetics , Tropanes
11.
Chin Herb Med ; 12(2): 104-117, 2020 Apr.
Article in English | MEDLINE | ID: mdl-36119793

ABSTRACT

The worldwide botanical and medicinal culture diversity are astonishing and constitute a Pierian spring for innovative drug R&D. Here, the latest awareness and the perspectives of pharmacophylogeny and pharmacophylogenomics, as well as their expanding utility in botanical drug R&D, are systematically summarized and highlighted. Chemotaxonomy is based on the fact that closely related plants contain the same or similar chemical profiles. Correspondingly, it is better to combine morphological characters, DNA markers and chemical markers in the inference of medicinal plant phylogeny. Medicinal plants within the same phylogenetic groups may have the same or similar therapeutic effects, thus forming the core of pharmacophylogeny. Here we systematically review and comment on the versatile applications of pharmacophylogeny in (1) looking for domestic resources of imported drugs, (2) expanding medicinal plant resources, (3) quality control, identification and expansion of herbal medicines, (4) predicting the chemical constituents or active ingredients of herbal medicine and assisting in the identification and determination of chemical constituents, (5) the search for new drugs sorting out, and (6) summarizing and improving herbal medicine experiences, etc. Such studies should be enhanced within the context of deeper investigations of molecular biology and genomics of traditional medicinal plants, phytometabolites and metabolomics, and ethnomedicine-based pharmacological activity, thus enabling the sustainable conservation and utilization of traditional medicinal resources.

12.
Chinese Herbal Medicines ; (4): 104-117, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-842025

ABSTRACT

The worldwide botanical and medicinal culture diversity are astonishing and constitute a Pierian spring for innovative drug R&D. Here, the latest awareness and the perspectives of pharmacophylogeny and pharmacophylogenomics, as well as their expanding utility in botanical drug R&D, are systematically summarized and highlighted. Chemotaxonomy is based on the fact that closely related plants contain the same or similar chemical profiles. Correspondingly, it is better to combine morphological characters, DNA markers and chemical markers in the inference of medicinal plant phylogeny. Medicinal plants within the same phylogenetic groups may have the same or similar therapeutic effects, thus forming the core of pharmacophylogeny. Here we systematically review and comment on the versatile applications of pharmacophylogeny in (1) looking for domestic resources of imported drugs, (2) expanding medicinal plant resources, (3) quality control, identification and expansion of herbal medicines, (4) predicting the chemical constituents or active ingredients of herbal medicine and assisting in the identification and determination of chemical constituents, (5) the search for new drugs sorting out, and (6) summarizing and improving herbal medicine experiences, etc. Such studies should be enhanced within the context of deeper investigations of molecular biology and genomics of traditional medicinal plants, phytometabolites and metabolomics, and ethnomedicine-based pharmacological activity, thus enabling the sustainable conservation and utilization of traditional medicinal resources.

13.
Acta Pharm Sin B ; 7(2): 146-158, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28303220

ABSTRACT

The Ranunculaceae genus Anemone (order Ranunculales), comprising more than 150 species, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine. Various medicinal compounds have been found in Anemone plants, especially triterpenoid saponins, some of which have shown anti-cancer activities. Some Anemone compounds and extracts display immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial activities. More than 50 species have ethnopharmacological uses, which provide clues for modern drug discovery. Anemone compounds exert anticancer and other bioactivities via multiple pathways. However, a comprehensive review of the Anemone medicinal resources is lacking. We here summarize the ethnomedical knowledge and recent progress on the chemical and pharmacological diversity of Anemone medicinal plants, as well as the emerging molecular mechanisms and functions of these medicinal compounds. The phylogenetic relationships of Anemone species were reconstructed based on nuclear ITS and chloroplast markers. The molecular phylogeny is largely congruent with the morphology-based classification. Commonly used medicinal herbs are distributed in each subgenus and section, and chemical and biological studies of more unexplored taxa are warranted. Gene expression profiling and relevant "omics" platforms could reveal differential effects of phytometabolites. Genomics, transcriptomics, proteomics, and metabolomics should be highlighted in deciphering novel therapeutic mechanisms and utilities of Anemone phytometabolites.

14.
Acta Pharmaceutica Sinica B ; (6): 146-158, 2017.
Article in English | WPRIM (Western Pacific) | ID: wpr-256770

ABSTRACT

The Ranunculaceae genus(order Ranunculales), comprising more than 150 species, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine. Various medicinal compounds have been found inplants, especially triterpenoid saponins, some of which have shown anti-cancer activities. Somecompounds and extracts display immunomodulatory, anti-inflammatory, antioxidant, and antimicrobial activities. More than 50 species have ethnopharmacological uses, which provide clues for modern drug discovery.compounds exert anticancer and other bioactivitiesmultiple pathways. However, a comprehensive review of themedicinal resources is lacking. We here summarize the ethnomedical knowledge and recent progress on the chemical and pharmacological diversity ofmedicinal plants, as well as the emerging molecular mechanisms and functions of these medicinal compounds. The phylogenetic relationships ofspecies were reconstructed based on nuclear ITS and chloroplast markers. The molecular phylogeny is largely congruent with the morphology-based classification. Commonly used medicinal herbs are distributed in each subgenus and section, and chemical and biological studies of more unexplored taxa are warranted. Gene expression profiling and relevant "omics" platforms could reveal differential effects of phytometabolites. Genomics, transcriptomics, proteomics, and metabolomics should be highlighted in deciphering novel therapeutic mechanisms and utilities ofphytometabolites.

15.
Chin J Nat Med ; 13(7): 507-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233841

ABSTRACT

This paper reports a pharmacophylogenetic study of a medicinal plant family, Ranunculaceae, investigating the correlations between their phylogeny, chemical constituents, and pharmaceutical properties. Phytochemical, ethnopharmacological, and pharmacological data were integrated in the context of the systematics and molecular phylogeny of the Ranunculaceae. The chemical components of this family included several representative metabolic groups: benzylisoquinoline alkaloids, ranunculin, triterpenoid saponin, and diterpene alkaloids, among others. Ranunculin and magnoflorine were found to coexist in some genera. The pharmacophylogenetic analysis, integrated with therapeutic information, agreed with the taxonomy proposed previously, in which the family Ranunculaceae was divided into five sub-families: Ranunculoideae, Thalictroideae, Coptidoideae, Hydrastidoideae, and Glaucidioideae. It was plausible to organize the sub-family Ranunculoideae into ten tribes. The chemical constituents and therapeutic efficacy of each taxonomic group were reviewed, revealing the underlying connections between phylogeny, chemical diversity, and clinical use, which should facilitate the conservation and sustainable utilization of the pharmaceutical resources derived from the Ranunculaceae.


Subject(s)
Alkaloids/analysis , Biodiversity , Phylogeny , Plant Extracts/chemistry , Ranunculaceae/chemistry , Saponins/analysis , Terpenes/analysis , Alkaloids/therapeutic use , Aporphines/analysis , Aporphines/therapeutic use , Furans/analysis , Humans , Methylglycosides/analysis , Phytotherapy , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Saponins/therapeutic use , Terpenes/therapeutic use
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-812516

ABSTRACT

This paper reports a pharmacophylogenetic study of a medicinal plant family, Ranunculaceae, investigating the correlations between their phylogeny, chemical constituents, and pharmaceutical properties. Phytochemical, ethnopharmacological, and pharmacological data were integrated in the context of the systematics and molecular phylogeny of the Ranunculaceae. The chemical components of this family included several representative metabolic groups: benzylisoquinoline alkaloids, ranunculin, triterpenoid saponin, and diterpene alkaloids, among others. Ranunculin and magnoflorine were found to coexist in some genera. The pharmacophylogenetic analysis, integrated with therapeutic information, agreed with the taxonomy proposed previously, in which the family Ranunculaceae was divided into five sub-families: Ranunculoideae, Thalictroideae, Coptidoideae, Hydrastidoideae, and Glaucidioideae. It was plausible to organize the sub-family Ranunculoideae into ten tribes. The chemical constituents and therapeutic efficacy of each taxonomic group were reviewed, revealing the underlying connections between phylogeny, chemical diversity, and clinical use, which should facilitate the conservation and sustainable utilization of the pharmaceutical resources derived from the Ranunculaceae.


Subject(s)
Humans , Alkaloids , Therapeutic Uses , Aporphines , Therapeutic Uses , Biodiversity , Furans , Methylglycosides , Phylogeny , Phytotherapy , Plant Extracts , Chemistry , Therapeutic Uses , Plants, Medicinal , Chemistry , Ranunculaceae , Chemistry , Saponins , Therapeutic Uses , Terpenes , Therapeutic Uses
SELECTION OF CITATIONS
SEARCH DETAIL
...