Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Xenobiot ; 14(2): 772-797, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921653

ABSTRACT

Substituted phenethylamines including 2C (2,5-dimethoxyphenethylamines) and NBOMe (N-(2-methoxybenzyl)phenethylamines) drugs are potent psychoactive substances with little to no knowledge available on their toxicity. In the present in vitro study, we explored the mechanisms underlying the neurotoxicity of six substituted phenethylamines: 2C-T-2, 2C-T-4, 2C-T-7 and their corresponding NBOMes. These drugs were synthesized and chemically characterized, and their cytotoxicity (0-1000 µM) was evaluated in differentiated SH-SY5Y cells and primary rat cortical cultures, by the NR uptake and MTT reduction assays. In differentiated SH-SY5Y cells, mitochondrial membrane potential, intracellular ATP and calcium levels, reactive oxygen species production, and intracellular total glutathione levels were also evaluated. All the tested drugs exhibited concentration-dependent cytotoxic effects towards differentiated SH-SY5Y cells and primary rat cortical cultures. The NBOMe drugs presented higher cytotoxicity than their counterparts, which correlates with the drug's lipophilicity. These cytotoxic effects were associated with mitochondrial dysfunction, evident through mitochondrial membrane depolarization and lowered intracellular ATP levels. Intracellular calcium imbalance was observed for 2C-T-7 and 25T7-NBOMe, implying a disrupted calcium regulation. Although reactive species levels remained unchanged, a reduction in intracellular total GSH content was observed. Overall, these findings contribute to a deeper understanding of these drugs, shedding light on the mechanisms underpinning their neurotoxicity.

2.
Angew Chem Int Ed Engl ; : e202406335, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699820

ABSTRACT

ß-Phenethylamines are widely represented in biologically and pharmacologically active organic small molecules. Here, we introduce N-pyridinium aziridines as latent dual electrophiles for the synthesis of ß-phenethylamines. Bromide-promoted ring opening generates ß-halopyridinium amines. Selective Ni-catalyzed C-C cross-coupling between organozinc nucleophiles and the benzylic C-Br electrophile affords a diverse family of ß-functionalized phenethylaminopyridinium salts, and coupling is stereoconvergent in the presence of chiral ligands. Subsequent Ni-catalyzed reductive N-N bond activation within the ß-functionalized phenethylaminopyridinium salts furnishes the products of formal olefin carboamination. Other reductive N-N cleavage reactions are demonstrated to provide access to free primary amines, alkylated amines, heterocycles, and products derived from N-centered radical chemistry. The developed reaction sequence can be implemented in the context of complex molecules and natural product derivatives. Together, the described results provide a general and modular synthesis of ß-phenethylamines and significantly expand the utility of N-pyridinium aziridines as linchpins in chemical synthesis.

3.
Behav Brain Res ; 465: 114924, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38423256

ABSTRACT

Given the critical role of maternal care in the neurodevelopment of offspring, this study aimed to investigate the effects of the psychedelic substance 25 H-NBOMe on maternal behavior in lactating rats and its subsequent impact on the social and neurodevelopmental behavior of the offspring. We administered two different dosages of 25 H-NBOMe (0.3 mg/kg and 1.0 mg/kg; i,p,) to lactating rats and observed changes in maternal behaviors, such as nest-building and pup retrieval, and in offspring behaviors, including social play. Behavioral assessments were complemented by physiological measurements to rule out general health or nutritional decline. 25 H-NBOMe significantly disrupted maternal behaviors, including nest-building and pup retrieval, without affecting the weight of dams or offspring. Offspring of exposed dams exhibited reduced social play behavior. Higher doses led to more pronounced disruptions, while lower doses, despite not visibly affecting maternal behavior, still impacted offspring behavior, suggesting potential direct effects of 25 H-NBOMe. The study highlights the potential risks associated with the use of 25 H-NBOMe during lactation, emphasizing its detrimental impact on maternal care and offspring development. These findings contribute to understanding the neurobiological effects of psychedelic substances during critical developmental periods and underscore the importance of avoiding their use.


Subject(s)
Hallucinogens , Prenatal Exposure Delayed Effects , Humans , Female , Rats , Animals , Lactation/physiology , Hallucinogens/pharmacology , Behavior, Animal/physiology , Maternal Behavior/physiology
4.
Molecules ; 29(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257299

ABSTRACT

In this study, we present the synthesis of five novel compounds by combining flurbiprofen with various substituted 2-phenethylamines. The synthesized derivatives underwent comprehensive characterization using techniques such as 1H- and 13C-NMR spectroscopy, UV-Vis spectroscopy, and high-resolution mass spectrometry (HRMS). Detailed HRMS analysis was performed for each of these newly created molecules. The biological activities of these compounds were assessed through in vitro experiments to evaluate their potential as anti-inflammatory and antioxidant agents. Furthermore, the lipophilicity of these derivatives was determined, both theoretically using the cLogP method and experimentally through partition coefficient (RM) measurements. To gain insights into their binding affinity, we conducted an in silico analysis of the compounds' interactions with human serum albumin (HSA) using molecular docking studies. Our findings reveal that all of the newly synthesized compounds exhibit significant anti-inflammatory and antioxidant activities, with results statistically comparable to the reference compounds. Molecular docking studies further explain the observed in vitro results, shedding light on the molecular mechanisms behind their biological activities. Using in silico method, toxicity was calculated, resulting in LD50 values. Depending on the administration route, the novel flurbiprofen derivatives show lower toxicity compared to the standard flurbiprofen.


Subject(s)
Flurbiprofen , Humans , Flurbiprofen/pharmacology , Antioxidants/pharmacology , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Radiopharmaceuticals
5.
Bioorg Med Chem Lett ; 97: 129562, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37967654

ABSTRACT

ß2-Adrenergic receptor (ß2AR) agonists have been reported to stimulate glucose uptake (GU) by skeletal muscle cells and are therefore highly interesting as a possible treatment for type 2 diabetes (T2D). The chirality of compounds often has a great impact on the activity of ß2AR agonists, although this has thus far not been investigated for GU. Here we report the GU for a selection of synthesized acyclic and cyclic ß-hydroxy-3-fluorophenethylamines. For the N-butyl and the N-(2-pentyl) compounds, the (R) and (R,R) (3d and 7e) stereoisomers induced the highest GU. When the compounds contained a saturated nitrogen containing 4- to 7-membered heterocycle, the (R,R,R) enantiomer of the azetidine (8a) and the pyrrolidine (9a) had the highest activity. Altogether, these results provide pivotal information for designing novel ß2AR agonist for the treatment of T2D.


Subject(s)
Adrenergic beta-2 Receptor Agonists , Diabetes Mellitus, Type 2 , Humans , Adrenergic Agonists , Adrenergic beta-2 Receptor Agonists/chemistry , Adrenergic beta-2 Receptor Agonists/pharmacology , Adrenergic beta-Agonists/chemistry , Adrenergic beta-Agonists/pharmacology , Amines , Biological Transport , Diabetes Mellitus, Type 2/drug therapy , Glucose , Receptors, Adrenergic, beta-2/metabolism
6.
Article in English | MEDLINE | ID: mdl-37882810

ABSTRACT

RATIONALE: Serotonergic psychedelics exert their effects via their high affinity for serotonin (5-HT) receptors, particularly through activating 5-HT2A receptors (5-HT2AR), employing the frontal cortex-dependent head-twitch response (HTR). Although universally believed to be so, studies have not yet fully ascertained whether 5-HT2AR activation is the sole initiator of these psychedelic effects. This is because not all 5-HT2AR agonists exhibit similar pharmacologic properties. OBJECTIVE: This study aims to identify and discriminate the roles of 5-HT2AR and 5-HT2CR in the HTR induced by Methallylescaline (MAL) and 4-Methyl-2,5,ß-trimethoxyphenethylamine (BOD) in male mice. Also, an analysis of their potential neurotoxic properties was evaluated. METHODS: Male mice treated with MAL and BOD were evaluated in different behavioral paradigms targeting HTR and neurotoxicity effects. Drug affinity, pharmacological blocking, and molecular analysis were also conducted to support the behavioral findings. The HTR induced by DOI has been extensively characterized in male mice, making it a good positive control for this study, specifically for comparing the pharmacological effects of our test compounds. RESULTS: The activation of 5-HT2CR, alone or in concert with 5-HT2AR, produces a comparable degree of HTRs (at a dose of 1 mg·kg-1), with divergent 5-HT2CR- and 5-HT2AR-Gqα11-mediated signaling and enhanced neurotoxic properties (at a dose of 30 mg·kg-1) coupled with activated pro-inflammatory cytokines. These findings show these compounds' potential psychedelic and neurotoxic effects in male mice. CONCLUSION: These findings showed that while 5-HT2AR is the main initiator of HTR, the 5-HT2CR also has a distinct property that renders it effective in inducing HTR in male mice.

7.
Heliyon ; 9(7): e17720, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449113

ABSTRACT

Introduction: NBOMes and NBOHs are psychoactive drugs derived from phenethylamines and have hallucinogenic effects due to their strong agonism to serotonin 5-HT2A receptors. Although cases of toxicity associated with the recreational use of substituted phenethylamines are frequently reported, there is a lack of information on the possible neurotoxic effects of NBOMe and NBOH in the brain hippocampus, a major neurogenesis region. Objectives: This study aimed at assessing the phenotypic and molecular effects of prolonged exposure of the hippocampus to the drugs 25H-NBOMe and 25H-NBOH. Methods: The ex vivo organotypic culture model of hippocampal slices (OHC) was used to investigate, by immunofluorescence and confocal microscopy, and transcriptome analyses, the mechanisms associated with the neurotoxicity of 25H-NBOMe and 25H-NBOH. Results: Reduction in the density of mature neurons in the OHCs occurred after two and seven days of exposure to 25H-NBOMe and 25H-NBOH, respectively. After the withdrawal of 25H-NBOMe, the density of mature neurons in the OHCs stabilized. In contrast, up to seven days after 25H-NBOH removal from the culture medium, progressive neuron loss was still observed in the OHCs. Interestingly, the exposure to 25H-NBOH induced progenitor cell differentiation, increasing the density of post-mitotic neurons in the OHCs. Corroborating these findings, the functional enrichment analysis of differentially expressed genes in the OHCs exposed to 25H-NBOH revealed the activation of WNT/Beta-catenin pathway components associated with neurogenesis. During and after the exposure to 25H-NBOMe or 25H-NBOH, gene expression patterns related to the activation of synaptic transmission and excitability of neurons were identified. Furthermore, activation of signaling pathways and biological processes related to addiction and oxidative stress and inhibition of the inflammatory response were observed after the period of drug exposure. Conclusion: 25H-NBOMe and 25H-NBOH disrupt the balance between neurogenesis and neuronal death in the hippocampus and, although chemically similar, have distinct neurotoxicity mechanisms.

8.
Crit Rev Toxicol ; 53(1): 15-33, 2023 01.
Article in English | MEDLINE | ID: mdl-37115704

ABSTRACT

Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.


Subject(s)
Hallucinogens , Animals , Humans , Hallucinogens/pharmacology , Phenethylamines/chemistry , Phenethylamines/metabolism , Phenethylamines/pharmacology , Seizures/chemically induced , Dopamine
9.
Forensic Toxicol ; 41(1): 1-24, 2023 01.
Article in English | MEDLINE | ID: mdl-36652064

ABSTRACT

PURPOSE: The present review aims to provide an overview of methods for the quantification of 2,5-dimethoxy-amphetamines and -phenethylamines in different biological matrices, both traditional and alternative ones. METHODS: A complete literature search was carried out with PubMed, Scopus and the World Wide Web using relevant keywords, e.g., designer drugs, amphetamines, phenethylamines, and biological matrices. RESULTS: Synthetic phenethylamines represent one of the largest classes of "designer drugs", obtained through chemical structure modifications of psychoactive substances to increase their pharmacological activities. This practice is also favored by the fact that every new synthetic compound is not considered illegal by existing legislation. Generally, in a toxicological laboratory, the first monitoring of drugs of abuse is made by rapid screening tests that sometimes can occur in false positive or false negative results. To reduce evaluation errors, it is mandatory to submit the positive samples to confirmatory methods, such as gas chromatography or liquid chromatography combined to mass spectrometry, for a more specific qualitative and quantitative analysis. CONCLUSIONS: This review highlights the great need for updated comprehensive analytical methods, particularly when analyzing biological matrices, both traditional and alternative ones, for the search of newly emerging designer drugs.


Subject(s)
Amphetamines , Phenethylamines , Phenethylamines/analysis , Gas Chromatography-Mass Spectrometry/methods , Amphetamines/analysis , Mass Spectrometry , Chromatography, Liquid/methods
10.
Drug Test Anal ; 15(1): 47-57, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35985772

ABSTRACT

In this study, the analytical characterization of three cathinones and one N-pyrrolidinyl-substituted amphetamine derivative is described: 1-([3,4-methylenedioxyphenyl])-2-(propylamino)butan-1-one (N-propyl norbutylone 1), 1-([3,4-methylenedioxyphenyl])-2-(butylamino)butan-1-one (N-butyl norbutylone 2), 2-(benzylamino)-1-phenylheptan-1-one (N-benzyl norheptedrone 3), and 1-(1-[3,4-dimethoxyphenyl]propan-2-yl)pyrrolidine (N-pyrrolidinyl-3,4-DMA 4). The identification was based on ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS), gas chromatography-orbitrap MS (GC-Orbitrap-MS), nuclear magnetic resonance spectroscopy (NMR), and Fourier transform infrared (FT-IR). GC-Orbitrap-MS, with higher mass accuracy, benefit more on the accurate structure elucidation of product ions compared with the low-resolution GC-MS. The collision-induced dissociation (CID) and electron ionization (EI) pathways of these compounds were examined to assist forensic laboratories in elucidating the structure of new psychoactive substances (NPS) with similar structure in their case work. In addition, electron activated dissociation (EAD) was applied to analyze N-benzyl norheptedrone, which showed only one product ion in the CID mode. The result showed that for compound with limited product ions in the CID mode, the EAD mode can give more complementary information for structure elucidation. In addition, quantitative NMR (qNMR) was applied for the quantification of four powdered/crystal and two herbal blend seized samples. To our knowledge, no analytical data about the compounds 3 and 4 have appeared until now, making this the first report on these compounds.


Subject(s)
Gas Chromatography-Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods
12.
Biomedicines ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36289598

ABSTRACT

The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.

13.
Polymers (Basel) ; 14(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808783

ABSTRACT

The paper describes the formation of six aromatic N-(2-arylethyl)-2-methylprop-2-enamides with various substituents in benzene ring, viz., 4-F, 4-Cl, 2,4-Cl2, 4-Br, 4-OMe, and 3,4-(OMe)2 from 2-arylethylamines and methacryloyl chloride in ethylene dichloride with high yields (46-94%). The structure of the compounds was confirmed by 1H NMR, 13C NMR, IR, and HR-MS. Those compounds were obtained to serve as functionalized templates for the fabrication of molecularly imprinted polymers followed by the hydrolysis of an amide linkage. In an exemplary experiment, the imprinted polymer was produced from N-(2-(4-bromophenyl)ethyl)-2-methylprop-2-enamide and divinylbenzene, acting as cross-linker. The hydrolysis of 2-(4-bromophenyl)ethyl residue proceeded and the characterization of material including SEM, EDS, 13C CP MAS NMR, and BET on various steps of preparation was carried out. The adsorption studies proved that there was a high affinity towards the target biomolecules tyramine and L-norepinephrine, with imprinting factors equal to 2.47 and 2.50, respectively, when compared to non-imprinted polymer synthesized from methacrylic acid and divinylbenzene only.

14.
Psychopharmacology (Berl) ; 239(6): 1665-1677, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35233648

ABSTRACT

BACKGROUND: Clinical studies suggest that psychedelics exert robust therapeutic benefits in a number of psychiatric conditions including substance use disorder. Preclinical studies focused on safety and efficacy of these compounds are necessary to determine the full range of psychedelics' effects. OBJECTIVES: The present study explores the behavioral pharmacology of structurally distinct psychedelics in paradigms associated with serotonin 2A receptor (5-HT2AR) activation and behavioral disruption in two rodent models. Utilizing the selective 5-HT2AR antagonist volinanserin, we aimed to provide further pharmacological assessment of psychedelic effects in rodents. METHODS: We compared volinanserin (0.0001-0.1 mg/kg) antagonism of the phenethylamine 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1.0 mg/kg) and the ergoline lysergic acid diethylamide (LSD, 0.32 mg/kg) in preclinical assays predictive of hallucinations (head-twitch response or HTR in mice) and behavioral disruption (intracranial self-stimulation or ICSS in rats). Volinanserin antagonism of the phenethylamine mescaline, the tryptamine psilocybin, and the k-opioid receptor agonist salvinorin A was also evaluated in the rat ICSS assay. RESULTS: Volinanserin had similar potency, effectiveness, and time-course to attenuate DOI-induced HTR in mice and ICSS depression in rats. Volinanserin completely blocked LSD-induced HTR in mice, but not LSD-induced ICSS depression in rats. Volinanserin also reversed ICSS depression by mescaline, but it was only partially effective to reduce the effects of psilocybin, and it exacerbated ICSS depression by salvinorin A. CONCLUSION: Although hallucination-related HTR behavior induced by phenethylamine, ergoline, and tryptamine psychedelics appears to be 5-HT2AR-mediated, the receptor(s) responsible for behavioral disruptive effects may differ among these three structural classes.


Subject(s)
Hallucinogens , Animals , Depression/chemically induced , Depression/drug therapy , Fluorobenzenes , Hallucinogens/chemistry , Hallucinogens/pharmacology , Lysergic Acid Diethylamide/pharmacology , Mescaline , Mice , Phenethylamines/pharmacology , Piperidines , Psilocybin , Rats , Receptor, Serotonin, 5-HT2A , Rodentia , Self Stimulation , Serotonin , Tryptamines
15.
Curr Res Toxicol ; 2: 386-398, 2021.
Article in English | MEDLINE | ID: mdl-34888530

ABSTRACT

Toxicological effects of 25H-NBOMe and 25H-NBOH recreational drugs on zebrafish embryos and larvae at the end of 96 h exposure period were demonstrated. 25H-NBOH and 25H-NBOMe caused high embryo mortality at 80 and 100 µg mL-1, respectively. According to the decrease in the concentration tested, lethality decreased while non-lethal effects were predominant up to 10 and 50 µg mL-1 of 25H-NBOH and 25H-NBOMe, respectively, including spine malformation, egg hatching delay, body malformation, otolith malformation, pericardial edema, and blood clotting. We can disclose that these drugs have an affinity for DNA in vitro using biophysical spectroscopic assays and molecular modeling methods. The experiments demonstrated that 25H-NBOH and 25H-NBOMe bind to the unclassical major groove of ctDNA with a binding constant of 27.00 × 104 M-1 and 5.27 × 104 M-1, respectively. Furthermore, these interactions lead to conformational changes in the DNA structure. Therefore, the results observed in the zebrafish embryos and DNA may be correlated.

16.
Eur J Pharmacol ; 908: 174339, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34265293

ABSTRACT

This study tested the effects of ß-methylphenylethylamine (ß-MPEA) and octopamine on contractile parameters of the gastrointestinal tract in rats. We hypothesized that some of their effects result from interactions with trace amine (TA)-associated receptors or serotoninergic 5-hydroxytryptamine (5-HT) receptors. ß-MPEA-induced contractions in rat gastric fundus strips under resting tonus conditions, but induced relaxation in preparations that were previously contracted with carbachol. Octopamine relaxed gastric fundus strips maintained at resting tonus or contracted with carbachol. The contractile effect of ß-MPEA was reduced by cyproheptadine and methiothepin, antagonists of excitatory 5-HT receptors. The relaxing effect of ß-MPEA on gastric fundus was insensitive to pretreatment with N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) and tropisetron, antagonists of TA1 and 5-HT4 receptors, respectively. Both EPPTB and tropisetron inhibited the relaxant effects of octopamine on carbachol-contracted preparations. Contrarily, EPPTB did not reduce the relaxant effects of RO5263397 (TA1 agonist) or zacopride (5-HT4 agonist). Octopamine, but not ß-MPEA, delayed the gastrointestinal transit of a liquid test meal in awaken rats. In isolated preparations of the small intestine under resting conditions, ß-MPEA did not alter the basal tonus, but octopamine relaxed it. Intestinal preparations previously contracted with carbachol relaxed after the addition of octopamine and decreased the magnitude of their spontaneous rhythmic contractions in a tropisetron-dependent manner. Thus, ß-MPEA and octopamine exerted pharmacological actions on the rat gastrointestinal tract. The excitatory effects of ß-MPEA involved 5-HT receptors. Octopamine inhibited the rat gut contractility through the likely involvement of 5-HT4 and TA receptors. Overall, octopamine effectively inhibited rat gastrointestinal transit.


Subject(s)
Amphetamines , Octopamine , Animals , Gastric Fundus , Muscle Contraction , Muscle Relaxation , Muscle, Smooth , Rats , Receptors, Serotonin
17.
Forensic Sci Int ; 325: 110884, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34245937

ABSTRACT

New psychoactive substances are being launched in the drug market at a rapidly growing pace. More than 950 new psychoactive substances have been reported to the United Nations Office on Drugs and Crime. The development of new psychoactive substance abuse has drawn risks on public health and safety. Phenethylamines, along with other stimulants, accounted for the majority of the new psychoactive substances being reported in the past decade. This study presents a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous screening of 74 conventional and artificial phenethylamines in urine samples. The chromatographic analysis was performed by a direct dilute-and-shoot procedure using a Phenomenex Kinetex® Phenyl-Hexyl column (10 cm × 2.1 mm i.d., 1.7 µm) and two mobile phases (A: 0.1% formic acid aqueous solution with 5 mM ammonium acetate, B: 0.1% formic acid methanolic solution). The mass fragments were collected under the multiple reaction monitoring mode. The linearity range located in 1.0-50.0 ng/mL for quantitative analysis. The limit of detection and lower limit of quantification for 74 phenethylamines were 0.5 ng/mL and 1.0 ng/mL, respectively. The method was validated and further applied to analyze authentic urine samples. Twenty samples were tested positive of seven phenethylamines from 67 samples, whereas the contents detected were 9.8 ng/mL to 147.1 µg/mL with dilution factors of 40 to 20,000 folds.


Subject(s)
Illicit Drugs/urine , Phenethylamines/urine , Psychotropic Drugs/urine , Chromatography, Liquid , Humans , Reproducibility of Results , Substance Abuse Detection , Tandem Mass Spectrometry
18.
J Sep Sci ; 44(15): 2932-2940, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34077621

ABSTRACT

Cyclodextrins and their derivatives have been used for chiral high-performance liquid chromatography selectors, while they are costly to use as mobile phase additives in high-performance liquid chromatography. Here, we report application of phenyl column coated permanently with methylated ß-cyclodextrin for chiral high-performance liquid chromatography. A 0.1% (v/v) phosphoric acid solution containing 1 M NaCl and 0.5% (w/v) methylated ß-cyclodextrin was subjected to a phenyl column at a flow rate of 0.5 mL/min at 30°C for 2 h. Using the precoating phenyl column, all the enantiomers of the four phenethylamines (norepinephrine, epinephrine, octopamine, and synephrine) were successfully separated simultaneously by high-performance liquid chromatography with a mobile phase without methylated ß-cyclodextrin at a flow rate of 0.2 mL/min at 30°C. The enantioseparation ability was retained for successive analyses during 1 week. It is suggested that inclusion complex of methylated ß-cyclodextrin with a phenyl group on the surface of the stationary phase could be formed and that the inclusion complex could form the ternary complex with the injected analytes. The longer retention time of (S)-enantiomers of analytes than corresponding (R)-enantiomers for high-performance liquid chromatography could be explained from the higher stability of the methylated ß-cyclodextrin complexes with (S)-enantiomers, which were confirmed by capillary electrophoresis and 1 H NMR spectroscopy experiments.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phenethylamines/isolation & purification , beta-Cyclodextrins/chemistry , Electrophoresis, Capillary/methods , Methylation , Phenethylamines/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Stereoisomerism
19.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920848

ABSTRACT

The forward (kon) and reverse (koff) rate constants of drug-target interactions have important implications for therapeutic efficacy. Hence, time-resolved assays capable of measuring these binding rate constants may be informative to drug discovery efforts. Here, we used an ion channel activation assay to estimate the kons and koffs of four dopamine D2 receptor (D2R) agonists; dopamine (DA), p-tyramine, (R)- and (S)-5-OH-dipropylaminotetralin (DPAT). We further probed the role of the conserved serine S1935.42 by mutagenesis, taking advantage of the preferential interaction of (S)-, but not (R)-5-OH-DPAT with this residue. Results suggested similar koffs for the two 5-OH-DPAT enantiomers at wild-type (WT) D2R, both being slower than the koffs of DA and p-tyramine. Conversely, the kon of (S)-5-OH-DPAT was estimated to be higher than that of (R)-5-OH-DPAT, in agreement with the higher potency of the (S)-enantiomer. Furthermore, S1935.42A mutation lowered the kon of (S)-5-OH-DPAT and reduced the potency difference between the two 5-OH-DPAT enantiomers. Kinetic Kds derived from the koff and kon estimates correlated well with EC50 values for all four compounds across four orders of magnitude, strengthening the notion that our assay captured meaningful information about binding kinetics. The approach presented here may thus prove valuable for characterizing D2R agonist candidate drugs.


Subject(s)
Dopamine Agonists/metabolism , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/metabolism , Serine/metabolism , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Animals , Conserved Sequence , Dopamine/metabolism , Dopamine Agonists/chemistry , Humans , Kinetics , Mutant Proteins/metabolism , Mutation/genetics , Phenethylamines/pharmacology , Protein Binding , Structure-Activity Relationship , Tyramine/metabolism , Xenopus laevis
20.
Exp Neurol ; 339: 113638, 2021 05.
Article in English | MEDLINE | ID: mdl-33571533

ABSTRACT

The use of several new psychoactive substances (NPS) has become very popular and is posing global health risks. Chemically and pharmacologically diverse molecules are constantly emerging and are presenting with a wide range of clinical implications. Serotonin toxicity, and specifically Serotonin Syndrome (SS), might develop as a result of an over-activation of the serotoninergic system caused by several mechanisms resulting in a classic triad of altered mental status, neuromuscular effects, and autonomic hyperactivity. In the present systematic review, we have investigated and summarized the available evidence related to the association between SS and NPS intake. Three retrospective studies, two case series and five case reports were included in this systematic review; several NPS were found to be implicated in SS occurrence These include psychedelic phenethylamines, e.g. 2, 5-dimethoxy-4-iodophenethylamine (2C-I); 2-(4-Iodo-2,5-dimethoxyphenyl)- N-I[(2-methyoxyphenyl)methyl]ethanamine (25I-NBOMe); and 5-(2-aminopropyl)indole (5-IT); and synthetic cathinones, e.g. mephedrone; 3,4-methylenedioxypyrovalerone (MDPV); methylone; butylone; NRG3; alpha-methyltryptamine (AMT); methoxphenidine (MXP); and the antidepressant bupropion. Bupropion was here misused at high dosages and/or in combination with other licit/illicit serotonergic drugs. Whilst most substances were ingested orally, nasal insufflation (with both 5-IT and 2C-I) and sublingual administration of blotter paper (with 25I-NBOMe) were reported as well. Interestingly, the psychiatric history was negative for most subjects, apart from two cases. Clinicians should be aware of NPS potential risks and the severe consequences of their recreational use, including SS. Also, due to their undetectability in routine and common drug screenings, the diagnostic challenges posed by NPS should not be underestimated during the treatment of such patients.


Subject(s)
Psychotropic Drugs/adverse effects , Serotonin Syndrome/chemically induced , Serotonin Syndrome/diagnosis , Animals , Humans , Retrospective Studies , Serotonin Syndrome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...