Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.479
Filter
1.
Ecol Evol ; 14(7): e11657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952655

ABSTRACT

Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.

2.
J Comp Physiol B ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953915

ABSTRACT

Individuals colonizing new areas at expanding ranges encounter numerous and unpredictable stressors. Exposure to unfamiliar environments suggests that colonists would differ in stress levels from residents living in familiar conditions. Few empirical studies tested this hypothesis and produced mixed results, and the role of stress regulation in colonization remains unclear. Studies relating stress levels to colonization mainly use a geographical analysis comparing established colonist populations with source populations. We used faecal glucocorticoid metabolites (FGMs) to assess both spatial and temporal dynamics of stress levels in an expanding population of midday gerbils (Meriones meridianus). We demonstrated that adult males and females had higher FGM levels in newly emerged colonies, compared with the source population, but differed in the pattern of FGM dynamics post-foundation. In males, FGM levels sharply decreased in the second year after colony establishment. In females, FGM levels did not change with time and remained high despite the decreasing environmental unpredictability, exhibiting among-individual variation. Increased stress levels of colonist males damping with time post-colonization suggest they are flexible in responding to immediate changes in environmental uncertainty. On the contrary, high and stable over generations stress levels uncoupled from the changes in the environmental uncertainty in female colonists imply that they carry a relatively constant phenotype associated with the reactive coping strategy favouring colonization. We link sex differences in consistency and plasticity in stress regulation during colonization to the sex-specific life-history strategies.

3.
J Exp Bot ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970454

ABSTRACT

Plant phenotypic plasticity plays an important role in nitrogen (N) acquisition and use under nitrogen-limited conditions. However, this role has never been quantified as a function of N availability, leaving it unclear whether plastic responses should be considered as potential targets for selection. A combined modelling and experimentation approach was adopted to quantify the role of plasticity on N uptake and plant yield. Based on a greenhouse experiment we considered plasticity in two maize traits: root-to-leaf biomass allocation ratio and emergence rate of axial roots. In a simulation experiment we individually enabled or disabled both plastic responses for maize stands grown across six N levels. Both plastic responses contributed to maintaining a higher N uptake and plant productivity as N-availability declined, compared to stands in which plastic responses were disabled. We conclude that plastic responses quantified in this study may be a potential target trait in breeding programs for greater N uptake across N levels while it may only be important for the internal use of N under N-limited conditions in maize. Given the complexity of breeding for plastic responses, an a priori model analysis is useful to identify which plastic traits to target for enhanced plant performance.

4.
Protoplasma ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967680

ABSTRACT

Phenotypic plasticity allows a plant cell to alter its structure and function in response to external pressure. This adaptive phenomenon has also been important in the evolution of plants including the emergence of land plants from a streptophyte alga. Penium margaritaceum is a unicellular zygnematophyte (i.e., the group of streptophyte algae that is sister to land plants) that was employed in order to study phenotypic plasticity with a focus on the role of subcellular expansion centers and the cell wall in this process. Live cell fluorescence labeling, immunofluorescence labeling, transmission electron microscopy, and scanning electron microscopy showed significant subcellular changes and alterations to the cell wall. When treated with the actin-perturbing agent, cytochalasin E, cytokinesis is arrested and cells are transformed into pseudo-filaments made of up to eight or more cellular units. When treated with the cyclin-dependent kinase (CDK) inhibitor, roscovitine, cells converted to a unique phenotype with a narrow isthmus zone.

5.
J Insect Physiol ; : 104671, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972633

ABSTRACT

Environmental gradients cause evolutionary and developmental changes in the cellular composition of organisms, but the physiological consequences of these effects are not well understood. Here, we studied experimental populations of Drosophila melanogaster that had evolved in one of three selective regimes: constant 16 °C, constant 25 °C, or intergenerational shifts between 16 °C and 25 °C. Genotypes from each population were reared at three developmental temperatures (16 °C, 20.5 °C, and 25 °C). As adults, we measured thorax length and cell sizes in the Malpighian tubules and wing epithelia of flies from each combination of evolutionary and developmental temperatures. We also exposed flies from these treatments to a short period of nearly complete oxygen deprivation to measure hypoxia tolerance. For genotypes from any selective regime, development at a higher temperature resulted in smaller flies with smaller cells, regardless of the tissue. At every developmental temperature, genotypes from the warm selective regime had smaller bodies and smaller wing cells but had larger tubule cells than did genotypes from the cold selective regime. Genotypes from the fluctuating selective regime were similar in size to those from the cold selective regime, but their cells of either tissue were the smallest among the three regimes. Evolutionary and developmental treatments interactively affected a fly's sensitivity to short-term paralyzing hypoxia. Genotypes from the cold selective regime were less sensitive to hypoxia after developing at a higher temperature. Genotypes from the other selective regimes were more sensitive to hypoxia after developing at a higher temperature. Our results show that thermal conditions can trigger evolutionary and developmental shifts in cell size, coupled with changes in body size and hypoxia tolerance. These patterns suggest links between the cellular composition of the body, levels of hypoxia within cells, and the energetic cost of tissue maintenance. However, the patterns can be only partially explained by existing theories about the role of cell size in tissue oxygenation and metabolic performance.

6.
Bull Entomol Res ; : 1-7, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828673

ABSTRACT

The social-sexual environment is well known for its influence on the survival of organisms by modulating their reproductive output. However, whether it affects survival indirectly through a variety of cues without physical contact and its influence relative to direct interaction remain largely unknown. In this study, we investigated both the indirect and direct influences of the social-sexual environment on the survival and reproduction of the mite Tyrophagus curvipenis (Acari: Acaridae). The results demonstrated no apparent influence of conspecific cues on the survival of mites, but the survival and reproduction of mated female mites significantly changed, with the females mated with males having a significantly shortened lifespan and increased lifetime fecundity. For males, no significant difference was observed across treatments in their survival and lifespan. These findings indicate that direct interaction with the opposite sex has a much more profound influence on mites than indirect interaction and highlight the urgent need to expand research on how conspecific cues modulate the performance of organisms with more species to clarify their impacts across taxa.

7.
Ecol Evol ; 14(6): e11489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840586

ABSTRACT

Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.

8.
Proc Biol Sci ; 291(2025): 20240256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889786

ABSTRACT

Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.


Subject(s)
Phenotype , Tetrahymena thermophila , Tetrahymena thermophila/physiology , Temperature , Adaptation, Physiological
9.
J Clin Med ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893049

ABSTRACT

Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.

10.
J Anim Ecol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898692

ABSTRACT

Fish fins are remarkable devices of propulsion. Fin morphology is intimately linked to locomotor performance, and hence to behaviours that influence fitness, such as foraging and predator avoidance. This foreshadows a connection between fin morphology and variation in predation risk. Yet, whether prey can adjust fin morphology according to changes in perceived risk within their lifetime (a.k.a. predator-induced plasticity) remains elusive. Here, we quantify the structural size of five focal fins in crucian carp (Carassius carassius) following controlled manipulations to perceived predation risk (presence/absence of pike Esox lucius). We also assess if crucian carp respond to increased predation risk by shifts in dorsal fin colouration, and test for differences in how fish actively use their dorsal fins by quantifying the area of the fin displayed in behavioural trials. We find that crucian carp show phenotypic plasticity with regards to fin size as predator-exposed fish consistently have larger fins. Individuals exposed to perceived predation risk also increased dorsal fin darkness and actively displayed a larger area of the fin to potential predators. Our results thus provide compelling evidence for predator-induced fin enlargement, which should result in enhanced escape swimming performance. Moreover, fin-size plasticity may evolve synergistically with fin colouration and display behaviour, and we suggest that the adaptive value of this synergy is to enhance the silhouette of deep-bodied and hard-to-capture prey to deter gape-limited predators prior to attack. Together, our results provide new perspectives on the role of predation risk in development and evolution of fins.

11.
Ecol Evol ; 14(6): e11482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826157

ABSTRACT

Phenotypic plasticity, the ability of a single genotype to produce different phenotypes under different environmental conditions, plays a profound role in several areas of evolutionary biology. One important role is as an adaptation to a variable environment. While plasticity is extremely well documented in response to many environmental factors, there is controversy over how much of that plasticity is adaptive. Evidence is also mixed over how often conspecific populations display qualitative differences in the nature of plasticity. We present data on the reaction norms of growth and maturation to variation in temperature and salinity in male and female sailfin mollies (Poecilia latipinna) from three locally adjacent populations from South Carolina (SC). We compare these reaction norms to those previously reported in locally adjacent populations from north Florida (NF). In general, patterns of plasticity in fish from SC were similar to those in fish from NF. The magnitude of plasticity differed; fish from SC displayed less plasticity than fish from NF. This was because SC fish grew faster and matured earlier at the lower temperatures and salinities compared to NF fish. This is a countergradient pattern of variation, in which SC fish grew faster and matured earlier in conditions that would otherwise slow growth and delay maturity. Among fish from both regions, males were much less plastic than females, especially for length at maturity. While there was no detectable heterogeneity among populations from NF, males from one of the SC populations, which is furthest from the other two, displayed a qualitatively different response in age at maturity to temperature variation than did males from the other two SC populations. The pattern of population variation in plasticity within and among regions suggests that gene flow, which diminishes with distance in sailfin mollies, plays a critical role in constraining divergence in norms of reaction.

12.
Evol Appl ; 17(6): e13693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828055

ABSTRACT

The adaptation of Anopheles malaria vectors to domestic settings is directly linked to their ability to feed on humans. The strength of this species-habitat association is unequal across the species within the genus, with the major vectors being particularly dependent on humans. However, our understanding of how blood-feeding behavior interacts with and adapts to environmental settings, including the presence of humans, remains limited. Using a field-based approach, we first investigated Anopheles community structure and feeding behavior patterns in domestic and sylvatic settings in La Lopé National Park in Gabon, Central Africa. We characterized the preference indices using a dual-host choice sampling approach across mosquito species, habitats, and seasons. We then quantified the plastic biting behavior of mosquito species in each habitat. We collected individuals from 16 Anopheles species that exhibited significant differences in species composition and abundance between sylvatic and domestic settings. The host-seeking behavior also varied among the seven most abundant species. The general attractiveness to each host, human or animal, remained relatively constant for each species, but with significant variations between habitats across species. These variations, to more generalist and to more anthropophilic behavior, were related to seasonal changes and distance from the village, respectively. Finally, we pointed out that the host choice of major malaria vectors changed in the absence of humans, revealing a plastic feeding behavior of these species. This study highlights the effect of humans on Anopheles distribution and feeding evolution. The characterization of feeding behavior in wild and domestic settings provides opportunities to better understand the interplay between genetic determinants of host preference and ecological factors. Our findings suggest that protected areas may offer alternative thriving conditions to major malaria vectors.

13.
Ecol Evol ; 14(6): e11549, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855313

ABSTRACT

Plant's life history can evolve in response to variation in climate spatio-temporally, but numerous multiple-species studies overlook species-specific (especially a foundation species) ecological effects and genetic underpinnings. For a species to successfully invade a region, likely to become a foundation species, life-history variation of invasive plants exerts considerable ecological and evolutionary impacts on invaded ecosystems. We examined how an invasive foundation plant, Spartina alterniflora, varied in its life history along latitudinal gradient using a common gardens experiment. Two common gardens were located at range boundary in tropical zone and main distribution area of S. alterniflora in temperate zone in China. Within each population/garden, we measured the onset time of three successive phenological stages constituting the reproductive phase and a fitness trait. In the low-latitude garden with higher temperature, we found that reproductive phase was advanced and its length prolonged compared to the high-latitude garden. This could possibly due to lower plasticity of maturity time. Additionally, plasticity in the length of the reproductive phase positively related with fitness in the low-latitude garden. Marginal population from tropic had the lowest plasticity and fitness, and the poor capacity to cope with changing environment may result in reduction of this population. These results reflected genetic divergence in life history of S. alterniflora in China. Our study provided a novel view to test the center-periphery hypothesis by integration across a plant's life history and highlighted the significance in considering evolution. Such insights can help us to understand long-term ecological consequences of life-history variation, with implications for plant fitness, species interaction, and ecosystem functions under climate change.

14.
Ecol Evol ; 14(6): e11422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846709

ABSTRACT

Daphnia can avoid predation by sensing fish kairomones and producing inducible defenses by altering the phenotype. In this study, the results showed that the morphological and life-history strategies of two Daphnia species (Daphnia pulex and Daphnia sinensis) exposed to Aristichthys nobilis kairomones. In the presence of fish kairomones, the two Daphnia species exhibited significantly smaller body length at maturity, smaller body length of offspring at the 10th instar, and longer relative tail spine of offspring. Nevertheless, other morphological and life-history traits of the two Daphnia species differed. D. pulex showed a significantly longer relative tail spine length and earlier age at maturity after exposure to fish kairomones. The total offspring number of D. sinensis exposed to fish kairomones was significantly higher than that of the control group, whereas that of D. pulex was significantly lower. These results suggest that the two Daphnia species have different inducible defense strategies (e.g., morphological and life-history traits) during prolonged exposure to A. nobilis kairomones, and their offspring also develop morphological defenses to avoid predation. It will provide reference for further exploring the adaptive evolution of Daphnia morphology and life-history traits in the presence of planktivorous fish.

15.
Proc Biol Sci ; 291(2024): 20240153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835272

ABSTRACT

Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.


Subject(s)
Phenotype , Predatory Behavior , Animals , Gene Regulatory Networks
16.
Biol Lett ; 20(6): 20240066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836647

ABSTRACT

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.


Subject(s)
Cues , Introduced Species , Predatory Behavior , Temperature , Animals , Brachyura/physiology , Bivalvia/physiology , Bivalvia/metabolism
17.
Trends Plant Sci ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38853096

ABSTRACT

Woody plants create the ecosystems they occupy and shape their biodiversity. Today's rapidly warming climate threatens these long-lived species by creating new environments in which existing populations become maladapted. Plants show enormous phenotypic diversity in response to environmental change, which can be caused by genotype or epigenetic mechanisms that influence the expression of the underlying DNA sequence. Whether epigenetics can affect ecologically important traits in trees is an important and controversial question. We explore the evidence that DNA methylation can affect gene expression, both directly and indirectly via its interaction with transposable elements (TEs), and subsequently shapes phenotypic variation in natural tree populations. Furthermore, we consider the potential of epigenetic approaches to assist in their conservation management strategies.

18.
Evol Appl ; 17(6): e13699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38832081

ABSTRACT

Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.

19.
New Phytol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922897

ABSTRACT

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.

20.
J Exp Bot ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938160

ABSTRACT

The flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, i.e. the ability of a genotype to display different phenotypes in response to environmental variations. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria ×ananassa) and modifies its QTL effects. To this end, we used a bi-parental segregating population grown for two years at widely divergent latitudes (5 European countries) and combined climatic variables with genomic data (Affymetrix® SNP array). Examination, using different phenological models, of the response of FT to photoperiod, temperature and global radiation, indicated that temperature is the main driver of FT in strawberry. We next characterized in the segregating population the phenotypic plasticity of FT by using three statistical approaches that generated plasticity parameters including reaction norm parameters. We detected 25 FT QTL summarized into 10 unique QTL. Mean values and plasticity parameters QTL were co-localized in three of them, including the major 6D_M QTL whose effect is strongly modulated by temperature. The design and validation of a genetic marker for the 6D_M QTL offers great potential for breeding programs, for example for selecting early-flowering strawberry varieties well adapted to different environmental conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...