Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
ARS med. (Santiago, En línea) ; 47(2): 56-67, jun. 03, 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1399836

ABSTRACT

El desarrollo de biomarcadores de la proteína tau para el diagnóstico temprano de la enfermedad de Alzheimer (EA) emerge como un desafío fundamental, pudiendo mejorar la efectividad de un tratamiento preventivo o que enlentezca la progresión de la enfermedad. Esta revisión analiza las evidencias que justificarían el uso de la proteína tau como biomarcador en Alzheimer preclínico. Para esto se seleccionaron artículos científicos (2011-2021) que incluyeran a la proteína tau en plasma y plaquetas como biomarcador. La presencia de la proteína tau fosforilada en el líquido cefalorraquídeo presenta limitaciones por su carácter invasivo mientras que las técnicas de imagen son costosas. La medición de tau en plaquetas se correlaciona con la severidad de la demencia, y sería útil en el seguimiento de la EA. Sin embargo, la pertinencia de su uso en la detección temprana de EA se mantiene en discusión. La presencia de proteína tau fosforilada en plasma correspondería al biomarcador con mayor nivel de desarrollo, respecto de beta amiloide. La proteína tau plasmática detecta la EA con gran precisión en casos de demencia y ha sido validada por estudios neuropatológicos. p-tau217 plasmática medida por primera vez junto a técnicas de imagen, fue importante en la etapa preclínica de EA pudiendo predecir la formación de ovillos neurofibrilares. La correlación entre especies fosforiladas de tau en plasma y EA preclínica ha sido bien establecida, por lo que su uso como biomarcador podría ser de utilidad para la comprensión del proceso fisiopatológico de la neurodegeneración y la detección temprana de EA


The development of tau protein biomarkers for the early diagnosis of Alzheimer's disease (AD) emerges as a fundamental challenge, which may improve the effectiveness of preventive treatment or slow the progression of the disease. This review analyzes the evidence that would justify the use of tau protein as a biomarker in preclinical Alzheimer's disease. For this purpose, we selected scientific articles (2011-2021) that included tau protein in plasma and platelets as a biomarker. Phosphorylated tau protein in cerebrospinal fluid has limitations due to its invasiveness, while imaging techniques are expensive. The tau measurement in platelets correlates with the severity of dementia and would be helpful in the follow-up of AD. However, the relevance of its use in the early detection of AD remains under discussion. Plasma phosphorylated tau protein would correspond to the biomarker with the highest level of development for beta-amyloid. Plasma tau protein detects AD with high accuracy in cases of dementia, and neuropathological studies validate its use. Plasma p-tau217 measured for the first time with imaging techniques was important in preclinical AD and could predict the formation of neurofibrillary tangles. The correlation between plasma phosphorylated tau species and preclinical AD is well-established, so its use as a biomarker would help understand the pathophysiological process of neurodegeneration and early AD detection.

2.
Neural Regen Res ; 17(8): 1645-1651, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017410

ABSTRACT

During normal aging, there is a decline in all physiological functions in the organism. One of the most affected organs is the brain, where neurons lose their proper synaptic function leading to cognitive impairment. Aging is one of the main risk factors for the development of neurodegenerative diseases, such as Alzheimer's disease. One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates. The most studied brain aggregates are the senile plaques, formed by Aß peptide; however, the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity. It is reported that neurons undergo severe mitochondrial dysfunction with age, with a decrease in adenosine 5'-triphosphate production, loss of the mitochondrial membrane potential, redox imbalance, impaired mitophagy, and loss of calcium buffer capacity. Interestingly, abnormal tau protein interacts with several mitochondrial proteins, suggesting that it could induce mitochondrial dysfunction. Nevertheless, whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown. A recent study of our laboratory shows that phosphorylated tau at Ser396/404 (known as PHF-1), an epitope commonly related to pathology, accumulates inside mitochondria during normal aging. This accumulation occurs preferentially in synaptic mitochondria, which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals. Here, we review the main tau modifications promoting mitochondrial dysfunction, and the possible mechanism involved. Also, we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging. Finally, we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer's disease, which could be considered as an early event in the neurodegenerative process. Thus, phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.

3.
J Alzheimers Dis ; 66(4): 1437-1451, 2018.
Article in English | MEDLINE | ID: mdl-30412505

ABSTRACT

Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-ß1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aß1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.


Subject(s)
Air Pollution/adverse effects , Alzheimer Disease/etiology , Environmental Exposure/adverse effects , tau Proteins/cerebrospinal fluid , Adolescent , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Child , Child, Preschool , Female , Humans , Male , Mexico , Phosphorylation , Pilot Projects , Prospective Studies , Urban Population
4.
Front Neurosci ; 12: 653, 2018.
Article in English | MEDLINE | ID: mdl-30333717

ABSTRACT

Alzheimer's disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation - one of the hallmarks of AD -, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB1 receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.

5.
Biol. Res ; 41(3): 239-252, 2008. ilus, tab, graf
Article in English | LILACS | ID: lil-511914

ABSTRACT

HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by axonal degeneration of the corticospinal tracts. The specific requirements for transport of proteins and organelles to the distal part of the long axon are crucial in the corticospinal tracts. Microtubule dysfunction could beinvolved in this disease, configuring an axonal transport disease. We measured tubulin and its posttranslational modified forms (acetylated and tyrosinated) in CSF of patients and controls, as well as tau and its phosphorylated forms. There were no significant differences in the contents of tubulin and acetyl-tubulinbetween patients and controls; tyrosyl-tubulin was not detected. In HAM/TSP, tau levels were significantly reduced, while the ratio of pT181/total tau was higher in patients than in controls, this being completely different from what is reported in other neurodegenerative diseases. Phosphorylation at T181 was also confirmed by Mass Spectrometry analysis. Western Blotting with monospecific polyclonal antibodies against pS199, pT205, pT231, pS262, pS356, pS396, pS404 and pS422 did not show differences in phosphorylation in these residues between patients and controls. Treating human SH-SY5Y neuroblastoma cells, a well-known in vitro neurite retraction model, with culture supernatant of MT-2 cells (HTLV-I infected cell line that secretes theviral Tax protein) we observed neurite retraction and an increase in tau phosphorylation at T181. A disruptionof normal phosphorylation of tau protein in T181 could result in its dysfunction, contributing to axonal damage.


Subject(s)
Aged , Humans , Middle Aged , Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic/cerebrospinal fluid , Tubulin/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Case-Control Studies , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Mass Spectrometry , Neurites/pathology , Phosphorylation/drug effects , Phosphorylation/physiology , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL