Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Environ Toxicol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248502

ABSTRACT

Several phthalates, mainly used as plasticizers, are known for their adverse effects on the male genital system. Previously, we demonstrated that an environmentally relevant mixture of six antiandrogenic phthalates (PMix), derived from a biomonitoring study in pregnant Brazilian women, was able to disrupt the reproductive development in male rats. Experimental groups (control, 0.1, 0.5, and 500 mg PMix/kg/day) were established starting from the extrapolated human dose (0.1 mg/kg/day), followed by doses 5 times and 5000 times higher. Pregnant rats received daily oral gavage administration of either vehicle (control) or PMix from gestational day 13 to postnatal day 10. Here, we examined male and female offspring regarding changes in gene expression of key reproductive factors in the hypothalamus and pituitary gland at adulthood and conducted a battery of behavioral tests in males, including partner preference, sexual behavior, and male attractiveness tests. PMix induced some changes in mating-related behavior in males, as demonstrated by the absence of preference for females against males and a higher number of penetrations up to ejaculation in the 0.5 dose group. PMix decreased Esr2 expression in the male hypothalamus across all three doses, and in females at mid and high doses in both the hypothalamus and pituitary. In male hypothalamus, we also observed decreased Kiss1 transcripts in these groups and a reduction in AR at the 0.5 dose group. In summary, our results provide further evidence that phthalates in a mixture, even at low doses, may exert cumulative effects on the structures underlying sexual behavior, which seems to be more sensitive than reproductive endpoints for the same experimental design.

2.
AAPS PharmSciTech ; 25(7): 197, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174702

ABSTRACT

Vulvovaginal candidiasis (VVC) alters the innate cervicovaginal immunity, which provides an important barrier against viruses and other infections. The incidence of this disease has not decreased in the last 30 years, so effective treatments are still needed. Nanoparticles (NPs) of cellulose acetate phthalate (CAP) and clotrimazole (CLZ) were prepared by the emulsification-diffusion method. NPs were characterized using dynamic light scattering, atomic force microscopy and differential scanning calorimetry; their release profile was determined by the dialysis bag technique and mucoadhesion was evaluated with the mucin-particle method. The growth inhibition study of Candida albicans was carried out using the plate counting technique. Finally, accelerated physical stability tests of NPs were carried out, both in water and in SVF. The CAP-CLZ NPs had an average diameter of 273.4 nm, a PDI of 0.284, smooth surfaces and spherical shapes. In vitro release of CLZ from the CAP NPs was categorized with the Weibull model as a matrix system in which initial release was rapid and subsequently sustained. The inhibition of C. albicans growth by the CAP-CLZ NPs was greater than that of free CLZ, and the CAP-only NPs had a microbicidal effect on C. albicans. The NPs showed poor mucoadhesiveness, which could lead to studies of their mucopenetration capacities. An accelerated physical stability test revealed the erosion of CAP in aqueous media. A nanoparticulate system was developed and provided sustained release of CLZ, and it combined an antifungal agent with a microbial polymer that exhibited antifungal activity against C. albicans.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis, Vulvovaginal , Cellulose , Clotrimazole , Nanoparticles , Clotrimazole/administration & dosage , Clotrimazole/pharmacology , Candidiasis, Vulvovaginal/drug therapy , Nanoparticles/chemistry , Candida albicans/drug effects , Female , Cellulose/chemistry , Cellulose/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Polymers/chemistry , Particle Size , Microbial Sensitivity Tests/methods , Drug Liberation
3.
Heliyon ; 10(12): e32067, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952375

ABSTRACT

Objectives: This study investigated the in vivo embryotoxicity, teratogenic potential, and additional effects of orthodontic acrylic resin as well as its components, utilizing zebrafish as a model organism. The research focused on morphological, cardiac, behavioral, and cognitive evaluations that were performed on embryos and larval-stage animals subjected to chronic exposure. Materials and methods: Embryo and larval-stage zebrafish were categorized into five experimental groups, which were further subdivided into five subgroups. These subgroups included three specific doses for each tested substance, a control with the vehicle (0.1 % dimethyl sulfoxide in water), and an absolute control (water). Assessments were performed on day 5 post-fertilization, which included morphological, cardiac, behavioral, and cognitive evaluations. All experiments had a sample size of ten animals and were performed in triplicate. Survival and hatching rates were analyzed using the Kaplan-Meier test, while other measurements were assessed using one-way analysis of variance (ANOVA), followed by the Tukey post hoc test. Results: Statistically significant differences were observed between the control and treatment groups across all the tested substances for heart rate, cognitive responsiveness, and cellular apoptosis. However, survival, hatching rate, and other parameters exhibited no significant variation, except for the highest dose in the dibutyl phthalate group, which demonstrated a notable difference in survival. Conclusions: Chronic exposure to acrylic resin and its components may be associated with decreased cognitive ability and cardiac rhythm, as well as an increase in the level of cellular apoptosis in zebrafish.

4.
Environ Toxicol ; 39(6): 3523-3536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38465474

ABSTRACT

A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 µg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.


Subject(s)
MicroRNAs , Phthalic Acids , Prenatal Exposure Delayed Effects , Prostatic Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Animals , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Female , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Maternal Exposure/adverse effects , Prostate/drug effects , Prostate/pathology , Rats, Wistar , Rats , Computer Simulation
5.
Reprod Biol ; 24(2): 100877, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461794

ABSTRACT

Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.


Subject(s)
Animals, Newborn , Diethylhexyl Phthalate , Mice, Inbred BALB C , Animals , Diethylhexyl Phthalate/toxicity , Male , Mice , Testis/drug effects , Testis/growth & development , Spermatogenesis/drug effects , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Plasticizers/toxicity , Female , Seminiferous Epithelium/drug effects
6.
Appl Microbiol Biotechnol ; 108(1): 94, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38212966

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is used worldwide and raises concerns because of its prevalence in the environment and potential toxicity. Herein, the capability of Fusarium culmorum to degrade a high concentration (3 g/L) of DEHP as the sole carbon and energy source in solid-state fermentation (SSF) was studied. Cultures grown on glucose were used as controls. The biodegradation of DEHP by F. culmorum reached 96.9% within 312 h. This fungus produced a 3-fold higher esterase activity in DEHP-supplemented cultures than in control cultures (1288.9 and 443.2 U/L, respectively). In DEHP-supplemented cultures, nine bands with esterase activity (24.6, 31.2, 34.2, 39.5, 42.8, 62.1, 74.5, 134.5, and 214.5 kDa) were observed by zymography, which were different from those in control cultures and from those previously reported for cultures grown in submerged fermentation. This is the first study to report the DEHP biodegradation pathway by a microorganism grown in SSF. The study findings uncovered a novel biodegradation strategy by which high concentrations of DEHP could be biodegraded using two alternative pathways simultaneously. F. culmorum has an outstanding capability to efficiently degrade DEHP by inducing esterase production, representing an ecologically promising alternative for the development of environmental biotechnologies, which might help mitigate the negative impacts of environmental contamination by this phthalate. KEY POINTS: • F. culmorum has potential to tolerate and remove di(2-ethylhexyl) phthalate (DEHP) • Solid-state fermentation is an efficient system for DEHP degradation by F. culmorum • High concentrations of DEHP induce high levels of esterase production by F. culmorum.


Subject(s)
Diethylhexyl Phthalate , Fusarium , Phthalic Acids , Diethylhexyl Phthalate/metabolism , Biodegradation, Environmental , Esterases/metabolism
7.
Chemosphere ; 341: 140020, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690569

ABSTRACT

As the second leading cause of death for cancer among men worldwide, prostate cancer (PCa) prevention and detection remain a critical challenge. One aspect of PCa research is the identification of common environmental agents that may increase the risk of initiation and progression of PCa. Endocrine disrupting chemicals (EDCs) are strong candidates for risk factors, partially because they alter essential pathways for prostate gland development and oncogenesis. Phthalates correspond to a set of commercially used plasticizers that humans are exposed to ubiquitously. Here, we show that maternal exposure to a phthalate mixture interferes with the expression profile of mRNA and proteins in the ventral prostate of offspring and increases the susceptibility to prostate adenocarcinomas in aged animals. The data highlight Ubxn11, Aldoc, Kif5c, Tubb4a, Tubb3, Tubb2, Rab6b and Rab3b as differentially expressed targets in young and adult offspring descendants (PND22 and PND120). These phthalate-induced targets were enriched for pathways such as: dysregulation in post-translational protein modification (PTPM), cell homeostasis, HSP90 chaperone activity, gap junctions, and kinases. In addition, the Kif5c, Tubb3, Tubb2b and Tubb4a targets were enriched for impairment in cell cycle and GTPase activity. Furthermore, these targets showed strong relationships with 12 transcriptional factors (TF), which regulate the phosphorylation of eight protein kinases. The correlation of TF-kinases is associated with alterations in immune system, RAS/ErbB/VEGF/estrogen/HIF-1 signaling pathways, cellular senescence, cell cycle, autophagy, and apoptosis. Downregulation of KIF5C, TUBB3 and RAB6B targets is associated with poor prognosis in patients diagnosed with adenocarcinoma. Collectively, this integrative investigation establishes the post-transcriptional mechanisms in the prostate that are modulated by maternal exposure to phthalate mixture during gestation and lactation.


Subject(s)
Prostatic Neoplasms , Proteome , Animals , Humans , Male , Pregnancy , Rats , Biomarkers , Lactation , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Transcriptome , Female , Maternal Exposure/adverse effects
8.
Fish Physiol Biochem ; 49(5): 883-893, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37537493

ABSTRACT

This study investigated the acute effects of dibutyl phthalate (DBP) exposure on energy metabolism and gill histology in zebrafish (Danio rerio). The in vitro incubation of gill tissue with 10 µM DBP for 60 min altered tissue energy supply, as shown by decreased lactate content and lactate dehydrogenase (LDH) activity. Higher concentrations of DBP (100 µM and 1 mM) increased lactate content and LDH activity; however, they blocked glucose uptake, depleted the glycogen content in cellular stores, and induced injury to the gills, as measured by LDH release to the extracellular medium. In addition, in vivo exposure of fish to 1 pM DBP for 12 h induced liver damage by increasing alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) activities. Gill histology indicated hyperemia, lamellar fusion, lamellar telangiectasis, and necrosis. Data indicate that acute exposure of zebrafish gills to the higher DBP concentrations studied induces anaerobic cellular activity and high lactate production, causing gill damage, diminishing cell viability, and incurring liver dysfunction.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Zebrafish/metabolism , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/metabolism , Gills/metabolism , Energy Metabolism , Lactates/metabolism , Lactates/pharmacology
9.
Adv Exp Med Biol ; 1428: 287-307, 2023.
Article in English | MEDLINE | ID: mdl-37466779

ABSTRACT

Currently, more than 100,000 papers had been published studying the placenta in both physiological and pathological contexts. However, relevant health conditions affecting placental function, mostly found in low-income countries, should be evaluated deeper. This review will raise some - of what we think necessary - points of discussion regarding challenging topics not fully understood, including the paternal versus maternal contribution on placental genes imprinting, placenta-brain communication, and some environmental conditions affecting the placenta. The discussions are parts of an international effort to fulfil some gaps observed in this area, and Latin-American research groups currently evaluate that.


Subject(s)
Fathers , Placenta , Male , Pregnancy , Humans , Female , Placenta/physiology , Latin America/epidemiology , Brain
10.
Int J Biol Macromol ; 243: 125254, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295699

ABSTRACT

The present work explores the esterification reaction in the polysaccharide extracted from the seaweed Gracilaria birdiae and investigates its antioxidant potential. The reaction process was conducted with phthalic anhydride at different reaction times (10, 20 and 30 min), using a molar ratio of 1:2 (polymer: phthalic anhydride). Derivatives were characterized by FTIR, TGA, DSC and XRD. The biological properties of derivatives were investigated by assays of cytotoxicity and antioxidant activity (2,2-diphenyl-1-picrylhydroxyl - DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt - ABTS). The results obtained by FT-IR confirmed the chemical modification, there was a reduction related to the presence of carbonyl and hydroxyl groups when compared to the in nature polysaccharide spectrum. TGA analysis showed a change in the thermal behavior of the modified materials. X-ray diffraction, it was shown that the in nature polysaccharide appeared as an amorphous material, while the material obtained after the chemical modification process had increased crystallinity, due to the introduction of phthalate groups. For the biological assays, it was observed that the phthalate derivative was more selective than the unmodified material for the murine metastatic melanoma tumor cell line (B16F10), revealing a good antioxidant profile for DPPH and ABTS radicals.


Subject(s)
Antineoplastic Agents , Gracilaria , Animals , Mice , Antioxidants/chemistry , Phthalic Anhydrides , Galactans , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/chemistry , Polysaccharides/chemistry
11.
Mar Pollut Bull ; 192: 115086, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37236093

ABSTRACT

The impacts of microplastics on filter feeders megafauna have recently received increased attention. These organisms are potentially exposed to plastic ingestion and the release of added/sorbed contaminants during feeding activities. An assessment of microplastic abundance and the chemical impact of Phthalates esters (PAEs) were performed in neustonic samples and skin biopsies of Balaenoptera physalus and Rhincodon typus inhabiting the Gulf of California (Mexico). Sixty-eight percent of the net tows contained plastics with a maximum of 0.24 items/m3 mainly composed of polyethylene fragments. PAE levels were detected both in environmental and skin biopsy samples, with the highest values in the fin whale specimens (5291 ng/g d.w). Plasticizer fingerprint showed a similar distribution pattern between neustonic samples and filter-feeding species, with DEHP and MBP having the highest concentrations. The detection of PAE levels confirmed their potential role as plastic tracers and give preliminary information about the toxicological status of these species feeding in La Paz Bay.


Subject(s)
Microplastics , Plastics , Bays , Mexico , Biopsy
12.
Environ Sci Pollut Res Int ; 30(10): 27996-28009, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36385344

ABSTRACT

The presence of phthalates constitutes a risk to the health of aquatic environments and organisms. This work aimed to evaluate the toxic effects of di-iso-pentyl-phthalate (DiPeP) at environmentally relevant concentrations of 5, 25, and 125 µg/L in Danio rerio after subchronic exposure for 14 days. DiPeP altered the antioxidant system in the liver (125 µg/L), intestine (25 µg/L), brain, and gills in all concentrations tested. In animals exposed to 125 µg/L, DNA damage was identified in the gills. In addition, loss of cell boundary of hepatocytes, vascular congestion, necrosis in the liver, and presence of immune cells in the intestinal lumen were observed. Erythrocytic nuclear alterations in the blood occurred in animals exposed to 25 µg/L. DiPeP was quantified in muscle tissue at all exposure concentrations, appearing in a concentration-dependent manner. Contaminants such as DiPeP will still be used for a long time, mainly by industries, being a challenge for industry versus environmental health.


Subject(s)
Phthalic Acids , Water Pollutants, Chemical , Animals , Zebrafish/physiology , Phthalic Acids/toxicity , Liver , Models, Theoretical , Water Pollutants, Chemical/toxicity
13.
Environ Res ; 215(Pt 2): 114337, 2022 12.
Article in English | MEDLINE | ID: mdl-36116495

ABSTRACT

Marine pollution with personal protective equipment (PPE) has recently gained major attention. Multiple studies reported the release of microplastics (MPs) and chemical contaminants from face masks, the most used PPE type. However, not much is known concerning the release of phthalate esters (PAEs) in aquatic media, as well as the hazard posed by other types of PPE. In the present study, we investigated the release of MPs and PAEs from face masks and gloves recovered from the environment. The results indicated that both PPEs release MPs comparable to the literature, but higher concentrations were presented by face masks. In turn, the total concentration of six PAEs was higher in gloves than in face masks. The release of these contaminants is exacerbated over time. The present study allows researchers to understand the contribution of PPE to marine pollution while accounting for gloves, a generally overlooked source of contaminants.


Subject(s)
COVID-19 , Phthalic Acids , COVID-19/epidemiology , COVID-19/prevention & control , Esters , Humans , Masks , Microplastics , Pandemics , Plastics
14.
J Toxicol Pathol ; 35(2): 159-170, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35516837

ABSTRACT

Exposure of Sprague-Dawley (SD) rats to acrylamide (AA) or di-butyl-phthalate (DBP) from the 12th gestational day to the 16th postnatal week (PNW) has been shown to reduce the effectiveness of orchiopexy in recovering the testicular alterations associated with experimental cryptorchidism established at weaning. Herein, we provide information about the long-term effects of AA or DBP on the testes of cryptorchid/orchiopexic rats. Male offspring exposed in utero to 10 mg/kg/day AA or 500 mg/kg/day DBP underwent bilateral surgical cryptorchidism at the 3rd PNW and orchiopexy at the 6th week, with continuous exposure to the chemicals through diet until the 58th week. Regardless of the test chemical, there were severe qualitative/quantitative alterations in the seminiferous tubules and increased numbers of Leydig cells. There was an increase and decrease in the number of tubules with c-Kit- and placental alkaline phosphatase-labeled germ cells, respectively, as compared to those in the control group, suggesting an imbalance between apoptosis and cell proliferation processes. The histological scores of the testicular lesions at the end of this one-year study were higher than those in the previous 16-week study, indicating that exposure of rats to the toxicants AA or DBP enhanced the testicular alterations induced by the chemicals beginning at the intra-uterine life, and impaired the effectiveness of orchiopexy in restoring the testes to normal morphology. Although the present experimental protocol does not completely replicate the natural human undescended testes, our findings may contribute to understanding the alterations occurring in cryptorchid/orchiopexic testes potentially exposed to exogenous chemicals for extended periods.

15.
Sci Total Environ ; 828: 154486, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278545

ABSTRACT

Bisphenols (BPs) and phthalate esters (PAEs) are extensively used in toys and childcare products. Therefore, children may be exposed to these compounds, causing potential adverse effects. Despite the strict control of the levels of these contaminants in toys by some nations, routine testing in Brazil is very scarce. The present study was aimed at determining the concentrations of PAEs and BPs in toys commercialized in Brazil, employing GC-MS and LC-MS/MS, respectively. Furthermore, the migration capacity of PAEs into saliva and the daily intake (EDI) were also estimated. Di-2-ethylhexyl phthalate (DEHP) was the PAE with the highest detection rate (93%) and migration rate (0.26 µg/min). Moreover, the levels of DEHP in some samples were above the threshold values set by the European Commission and the Brazilian Institute of Metrology, Standardization, and Industrial Quality. Among the BPs analogs, BPA and BPS presented the highest positive detection rates (72% and 30%, respectively). However, their levels were below the permitted values in all analyzed samples. A daily intake of DEHP was estimated at 29.8 µg/kg bw/day, being this exposure similar to those found in other countries and below the EFSA acceptable intake limit (50 µg/kg bw/day). However, our data are referred to exposure through oral contact with the analyzed toys, while the contribution of other potential sources, such as food consumption, were not here considered. To the best of our knowledge, this is the first study estimating the exposure of Brazilian children to PAEs and BPs, considering toys as the exposure source. These preliminary data may become a valuable guide for the control of EDC levels in toys commercialized in Brazil, as well as for future studies regarding estimation of exposure to EDCs by children taking into account multiple potential sources.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Brazil , Child , Chromatography, Liquid , Environmental Exposure/analysis , Esters , Humans , Saliva , Tandem Mass Spectrometry
16.
Environ Sci Pollut Res Int ; 29(25): 38645-38656, 2022 May.
Article in English | MEDLINE | ID: mdl-35080728

ABSTRACT

The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Environmental Pollutants , Phthalic Acids , Diethylhexyl Phthalate/urine , Endocrine Disruptors/analysis , Environmental Exposure/analysis , Environmental Pollutants/analysis , Female , Humans , Mexico , Phthalic Acids/metabolism , Plastics
17.
Environ Int ; 158: 107018, 2022 01.
Article in English | MEDLINE | ID: mdl-34991270

ABSTRACT

In 2011, phthalates, mainly di-(2-ethylhexyl) phthalate (DEHP), were found to have been added to a variety of foods in Taiwan, increasing the risk of microalbuminuria in children. Exposure to melamine perhaps modifies that risk. This prospective cohort study investigates whether renal injury resulting from exposure to DEHP-tainted foods from the 2011 Taiwan Food Scandal is reversed over time. The temporal and interactive effects of past daily DEHP intake, current daily DEHP intake, and urinary melamine levels on oxidative stress and renal injury were also examined. Two hundred possibly DEHP-affected children (aged < 18 years) were enrolled in the first survey wave (August 2012-January 2013), with 170 and 159 children in the second (July 2014-February 2015) and third waves (May 2016-October 2016), respectively. The first wave comprised questionnaires that were used to collect information about possible past daily DEHP intake from DEHP-tainted foods. One-spot first morning urine samples were collected to measure melamine levels, phthalate metabolites, and markers indicating oxidative stress (malondialdehyde and 8-oxo-2'-deoxyguanosine), and renal injury (albumin/creatinine ratio (ACR) and N-acetyl-beta-D-glucosaminidase) in all three waves. Generalized estimating equation (GEE) modeling revealed that both past daily DEHP intake and time might affect urinary ACR. However, most interactions were negative and significant correlation was observed only during the second wave (P for interaction = 0.014) in the group with the highest past daily DEHP intake (>50 µg/kg/day). Urinary melamine levels were found to correlate significantly with both urinary ACR and oxidative stress markers. The highest impact associated with exposure to DEHP-tainted foods in increasing urinary ACR of children was observed during the first wave, and the effect may partially diminish over time. These results suggest that continuous monitoring of renal health and other long-term health consequences is required in individuals who were affected by the scandal in 2011.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Child , Diethylhexyl Phthalate/toxicity , Environmental Exposure/adverse effects , Food Contamination , Humans , Kidney/chemistry , Oxidative Stress , Prospective Studies , Taiwan , Triazines
18.
JBRA Assist Reprod ; 26(1): 53-61, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34338483

ABSTRACT

OBJECTIVE: To determine the length of exposure to high doses of phthalate that might affect sperm quality in adult male Wistar rats. METHODS: Forty-two (42) adult male Wistar rats (weighing 150-200 g) were randomly assigned into six groups (n=7): Group A received 0.5 mL of distilled water - placebo - and served as controls; groups B, C, D, E and F received Phthalate (750 mg/kgbw) for 1, 3, 5, 7 and 9 weeks, respectively. The data obtained from the study was expressed as Mean ± SEM with a p-value <0.05 considered significant. The data was analyzed with one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test using GraphPad Prism, version 8. RESULTS: The results showed a statistically significant (p<0.05) decrease in testicular weight in the rats exposed to 750 mg/kg of phthalate for 3, 5, 7 and 9 weeks when compared with the controls. Sperm count, motility and viability were also significantly (p<0.05) reduced, while sperm cells with abnormal morphology had increased counts in the groups exposed for 3, 5, 7 and 9 weeks when compared with controls. Serum zinc and magnesium were also significantly reduced (p<0.05) in the subjects treated for 1, 3, 5, 7 and 9 weeks when compared with controls. CONCLUSIONS: The dosage of phthalate adopted in this study was deleterious to testicular function when rats were exposed to it for as short a period as three weeks.


Subject(s)
Semen Analysis , Sperm Motility , Animals , Male , Phthalic Acids , Rats , Rats, Wistar , Sperm Count , Spermatozoa
19.
J. appl. oral sci ; J. appl. oral sci;30: e20220227, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421892

ABSTRACT

Abstract To evaluate the release of bisphenol-A glycidyl methacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), bisphenol A (BPA), and phthalates of the composite resin used in the bonding of spurs applied in the treatment of children with anterior open bite and its effects on human keratinocytes. Methodology Saliva samples of 22 children were collected before spur attachment (baseline) and 30 minutes (min) and 24 hours (h) after spur bonding. Analysis was performed using high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (HPLC-MS/MS) and gas chromatography coupled to mass spectrometry (GC-MS). Standardized resin increments were added to three different dilutions of the cell culture medium. Keratinocytes (HaCaT) were cultivated in the conditioned media and evaluated for cell viability (MTT) and cell scratch assay. Results The levels of BisGMA (1.74±0.27 μg/mL), TEGDMA (2.29±0.36 μg/mL), and BPA (3.264±0.88 μg/L) in the saliva after 30 min, in comparison to baseline (0±0 μg/mL, 0±0 μg/mL, and 1.15±0.21 μg/L, respectively), presented higher numbers. After 24 h, the levels of the monomers were similar to the baseline. Phthalates showed no significant difference among groups. HaCat cells showed increased viability and reduced cell migration over time after exposure to methacrylate-based resin composites. Conclusion Resin composites, used to attach spurs in children with anterior open bite during orthodontic treatment, release monomers after polymerization and can influence the behavior of human keratinocytes, even at very low concentrations. Orthodontists should be aware of the risks of the resinous compounds release and preventive procedures should be held to reduce patient exposure.

20.
Food Chem Toxicol ; 158: 112649, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34728246

ABSTRACT

Phthalates are synthetic chemicals widely used to make polyvinylchloride (PVC) soft and flexible. Of these, Di-(2-ethylhexyl) phthalate (DEHP) is the most commonly used, with high human exposure occurring as early as the fetal developmental stage and affecting the endocrine system. We focused on the perinatal DEHP effects on pituitary estrogen receptor (ER) expression in male rats, explored their impact on lactotroph and somatotroph cell growth, and evaluated the direct effects of this phthalate on pituitary cell cultures. Our results showed that DEHP perinatal exposure was unable to modify the ERα+ pituitary cell number from prepuberal rats, but increased ERß+ cells. In adulthood, the pituitary ERα+ cells underwent a slight decrease with ERß showing the greatest changes, and with a significant increase observed in somatotroph cells. Also, in vitro, DEHP reduced the ERα+ cells, increased the percentage of ERß+ pituitary cells and modified the Ki67 index, as well as decreasing the lactotrophs and increasing the somatotroph cells. In conclusion, the present study showed that DEHP induced ER expression changes in normal pituitary glands from male rats in in vivo and in vitro conditions, suggesting that DEHP could differentially modulate lactotroph and somatotroph cell growth, possibly as a consequence of ER imbalance.


Subject(s)
Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Pituitary Gland , Prenatal Exposure Delayed Effects , Receptors, Estrogen/metabolism , Animals , Cell Proliferation/drug effects , Female , Lactotrophs/drug effects , Lactotrophs/metabolism , Male , Pituitary Gland/cytology , Pituitary Gland/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar , Somatotrophs/drug effects , Somatotrophs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL