Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 25181-25193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698676

ABSTRACT

Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.


Subject(s)
Hydrogels , Hydrogels/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Animals , Wireless Technology , Wearable Electronic Devices , Electric Conductivity , Humans , Polyvinyl Alcohol/chemistry , Swine , Smartphone , Skin/chemistry , Carboxymethylcellulose Sodium/chemistry
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612829

ABSTRACT

With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.


Subject(s)
Cerium , Nanoparticles , Nanostructures , Biological Transport , Chloroplasts
3.
Plants (Basel) ; 12(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38140439

ABSTRACT

Salinity stress significantly hampers cotton seed germination and seedling growth. Employing plant growth regulators stands out as an effective strategy to mitigate salt stress. In this study, we assessed the impact of varying concentrations of natural composite salt conditions (0%, 0.6%, and 1.2%) on cotton seed germination, seedling growth, and physiology. Additionally, we explored the effects of compound sodium nitrophenolate (CSN: 2 mg·L-1 and 10 mg·L-1), 24-epibrassinolide (EBR: 0.02 mg·L-1 and 0.1 mg·L-1), and gibberellic acid (GA: 60 mg·L-1 and 300 mg·L-1), against a control (CK: distilled water) group. The results indicate that with an increase in the composite salt concentration, the germination potential (GP) and germination rate (GR) of cotton seeds gradually decrease. Simultaneously, the fresh weight and root vitality of seedlings also correspondingly decrease, while the degree of membrane lipid peroxidation increases. Under high-salt (1.2%) conditions, soaking treatments with CSN and EBR significantly enhance both GP (45-59% and 55-64%) and GR (30-33% and 39-36%) compared to the CK. However, the GA treatment does not increase the GP and GR of cotton. Moreover, under high-salt (1.2%) conditions, CSN and EBR treatments result in the increased activities of superoxide dismutase (56-66% and 71-80%), peroxidase (20-24% and 37-51%), and catalase (26-32% and 35-46%). Consequently, cotton exhibits a relatively good tolerance to natural composite salts. Soaking treatments with CSN and EBR effectively improve cotton germination by enhancing antioxidant enzyme activities, thereby strengthening cotton's tolerance to salt stress. These findings offer new insights for enhancing the salt tolerance of cotton.

4.
Materials (Basel) ; 16(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37629855

ABSTRACT

The integration of textile-based flexible sensors and electronic devices has accelerated the development of wearable textiles for posture monitoring. The complexity of the processes required to create a complete monitoring product is currently reflected in three main areas. The first is the sensor production process, which is complex. Second, the integration of the sensor into the garment requires gluing or stitching. Finally, the production of the base garment requires cutting and sewing. These processes deteriorate the user experience and hinder the commercial mass production of wearable textiles. In this paper, we knitted a one-piece seamless knitted vest (OSKV) utilizing the one-piece seamless knitting technique and positioned an embedded needle sensing zone (EHSZ) with good textile properties and electrical performance for monitoring human shoulder activity. The EHSZ was knitted together with the OSKV, eliminating the need for an integration process. The EHSZ exhibited good sensitivity (GF = 2.23), low hysteresis (0.29 s), a large stretch range (200%), and excellent stability (over 300 cycles), satisfying the requirement to capture a wide range of deformation signals caused by human shoulder movements. The OSKV described the common vest process structure without the stitching process. Furthermore, OSKV fulfilled the demand for seamless and trace-free monitoring while effortlessly and aesthetically satisfying the knitting efficiency of commercial garments.

5.
Life Sci ; 330: 121919, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37422071

ABSTRACT

Bile acids (BAs) function as detergents promoting nutrient absorption and as hormones regulating nutrient metabolism. Most BAs are key regulatory factors of physiological activities, which are involved in the regulation of glucose, lipid, and drug metabolisms. Hepatic and intestinal diseases have close connections with the systemic cycling disorders of BAs. The abnormal in BA absorption came up with overmuch BAs could be involved in the pathophysiology of liver and bowel and metabolic disorders such as fatty liver diseases and inflammatory bowel diseases. The primary BAs (PBAs), which are synthesized in the liver, can be transformed into the secondary BAs (SBAs) by gut microbiota. The transformation processes are tightly associated with the gut microbiome and the host endogenous metabolism. The BA biosynthesis gene cluster bile-acid-inducible operon is essential for modulating BA pool, gut microbiome composition, and the onset of intestinal inflammation. This forms a bidirectional interaction between the host and its gut symbiotic ecosystem. The subtle changes in the composition and abundance of BAs perturb the host physiological and metabolic activity. Therefore, maintaining the homeostasis of BAs pool contributes to the balance of the body's physiological and metabolic system. Our review aims to dissect the molecular mechanisms underlying the BAs homeostasis, assess the key factors sustaining the homeostasis and the role of BA acting on host diseases. By linking the BAs metabolic disorders and their associated diseases, we illustrate the effects of BAs homeostasis on health and potential clinical interventions can be taken under the latest research findings.


Subject(s)
Bile Acids and Salts , Metabolic Diseases , Humans , Bile Acids and Salts/metabolism , Ecosystem , Liver/metabolism , Homeostasis , Metabolic Diseases/metabolism
6.
Foods ; 12(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37372538

ABSTRACT

Naringin (NG), a natural flavanone glycoside, possesses a multitude of pharmacological properties, encompassing anti-inflammatory, sedative, antioxidant, anticancer, anti-osteoporosis, and lipid-lowering functions, and serves as a facilitator for the absorption of other drugs. Despite these powerful qualities, NG's limited solubility and bioavailability primarily undermine its therapeutic potential. Consequently, innovative solubilization methodologies have received considerable attention, propelling a surge of scholarly investigation in this arena. Among the most promising solutions is the enhancement of NG's solubility and physiological activity without compromising its inherent active structure, therefore enabling the formulation of non-toxic and benign human body preparations. This article delivers a comprehensive overview of NG and its physiological activities, particularly emphasizing the impacts of structural modification, solid dispersions (SDs), inclusion compound, polymeric micelle, liposomes, and nanoparticles on NG solubilization. By synthesizing current research, this research elucidates the bioavailability of NG, broadens its clinical applicability, and paves the way for further exploration and expansion of its application spectrum.

7.
Front Hum Neurosci ; 17: 1147329, 2023.
Article in English | MEDLINE | ID: mdl-37151896

ABSTRACT

Background: Adult attention-deficit/hyperactivity disorder (ADHD) is often associated with risky decision-making behavior. However, current research studies are often limited by the ability to adequately reflect daily behavior in a laboratory setting. Over the lifespan impairments in cognitive functions appear to improve, whereas affective functions become more severe. We assume that risk behavior in ADHD arises predominantly from deficits in affective processes. This study will therefore aim to investigate whether a dysfunction in affective pathways causes an abnormal risky decision-making (DM) behavior in adult ADHD. Methods: Twenty-eight participants with ADHD and twenty-eight healthy controls completed a battery of questionnaires regarding clinical symptoms, self-assessment of behavior and emotional competence. Furthermore, skin conductance responses were measured during the performance in a modified version of the Balloon Analogue Risk Task. A linear mixed-effects model analysis was used to analyze emotional arousal prior to a decision and after feedback display. Results: Results showed higher emotional arousal in ADHD participants before decision-making (ß = -0.12, SE = 0.05, t = -2.63, p < 0.001) and after feedback display (ß = -0.14, SE = 0.05, t = -2.66, p = 0.008). Although risky behavior was greater in HC than in ADHD, we found a significant interaction effect of group and anticipatory skin conductance responses regarding the response behavior (ß = 107.17, SE = 41.91, t = 2.56, p = 0.011). Post hoc analyses revealed a positive correlation between anticipatory skin conductance responses and reaction time in HC, whereas this correlation was negative in ADHD. Self-assessment results were in line with the objective measurements. Conclusion: We found altered changes in physiological activity during a risky decision-making task. The results confirm the assumption of an aberrant relationship between bodily response and risky behavior in adult ADHD. However, further research is needed with respect to age and gender when considering physiological activities.

8.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240106

ABSTRACT

Phyto-melatonin improves crop yield by mitigating the negative effects of abiotic stresses on plant growth. Numerous studies are currently being conducted to investigate the significant performance of melatonin in crops in regulating agricultural growth and productivity. However, a comprehensive review of the pivotal performance of phyto-melatonin in regulating plant morpho-physiological and biochemical activities under abiotic stresses needs to be clarified. This review focused on the research on morpho-physiological activities, plant growth regulation, redox status, and signal transduction in plants under abiotic stresses. Furthermore, it also highlighted the role of phyto-melatonin in plant defense systems and as biostimulants under abiotic stress conditions. The study revealed that phyto-melatonin enhances some leaf senescence proteins, and that protein further interacts with the plant's photosynthesis activity, macromolecules, and changes in redox and response to abiotic stress. Our goal is to thoroughly evaluate phyto-melatonin performance under abiotic stress, which will help us better understand the mechanism by which phyto-melatonin regulates crop growth and yield.


Subject(s)
Melatonin , Melatonin/pharmacology , Melatonin/metabolism , Plant Development , Stress, Physiological , Crops, Agricultural/metabolism , Photosynthesis
9.
Materials (Basel) ; 16(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109933

ABSTRACT

Due to their unique characteristics, nanoparticles are increasingly used in agricultural production through foliage spraying and soil application. The use of nanoparticles can improve the efficiency of agricultural chemicals and reduce the pollution caused by the use of agricultural chemicals. However, introducing nanoparticles into agricultural production may pose risks to the environment, food and even human health. Therefore, it is crucial to pay attention to the absorption migration, and transformation in crops, and to the interaction with higher plants and plant toxicity of nanoparticles in agriculture. Research shows that nanoparticles can be absorbed by plants and have an impact on plant physiological activities, but the absorption and transport mechanism of nanoparticles is still unclear. This paper summarizes the research progress of the absorption and transportation of nanoparticles in plants, especially the effect of size, surface charge and chemical composition of nanoparticle on the absorption and transportation in leaf and root through different ways. This paper also reviews the impact of nanoparticles on plant physiological activity. The content of the paper is helpful to guide the rational application of nanoparticles in agricultural production and ensure the sustainability of nanoparticles in agricultural production.

10.
Int J Cosmet Sci ; 45(4): 458-469, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36872851

ABSTRACT

OBJECTIVE: This study aimed to demonstrate the specific nature of well-being induced by a facial skincare by deciphering its physiological and psychological impacts out of a therapeutic context. METHODS: Objective and subjective evaluations were performed on two groups of healthy participants. One group of 32 participants received 1-h facial skincare, while the second group of 31 participants were subjected to a resting condition during the same period. Electroencephalography, electrocardiography, electromyography, and respiratory rate measurements were assessed before and after both experimental conditions. Prosody and semantic analyses were also performed to evaluate the emotional perception in both groups. RESULTS: Physiological relaxation was observed after both experimental sessions; however, the effect was higher after the facial skincare. The cerebral, cardiac, respiratory, and muscular relaxation induced by facial skincare was 42%, 13%, 12%, and 17% higher, respectively, than that induced by the resting condition. In addition, non-verbal and verbal assessments showed that positive emotions were more markedly associated with the perception of facial skincare. CONCLUSION: The comparison between parameters recorded after a rest period allowed us to distinguish the physiological and psychological signature of facial skincare. Moreover, our results suggest an involvement of positive emotions in the physiological relaxation enhancement. All these observations contribute to the very scarce data available on the specific profile of well-being associated with facial skincare.


OBJECTIF: Cette étude visait à démontrer la nature spécifique du bien-être, induit par un soin du visage, en décryptant son impact physiologique et psychologique en dehors d'un contexte thérapeutique. MÉTHODES: Des évaluations objectives et subjectives ont été réalisées sur deux groupes de participants sains. Le premier groupe, de 32 participants, a reçu un soin du visage d'une heure ; tandis que le second groupe, de 31 participants, a été soumis à une session de repos de même durée. Des mesures d'électroencéphalographie, d'électrocardiographie, d'électromyographie, ainsi que de fréquence respiratoire, ont été enregistrées avant et après ces deux conditions expérimentales. Des analyses prosodiques et sémantiques ont également été effectuées, pour évaluer la perception émotionnelle dans chacun des deux groupes. RÉSULTATS: Une relaxation physiologique a été observée après les deux sessions expérimentales ; cependant, celle-ci fût plus importante après le soin du visage. En effet, comparativement à la session de repos, le soin du visage a induit une relaxation cérébrale, mais aussi cardiaque, respiratoire et musculaire, plus élevées de 42%, 13%, 12% et 17%, respectivement. De plus, les évaluations verbales et non verbales ont montré que les émotions positives étaient nettement plus associées à la perception du soin du visage, plutôt qu'à celle du repos. CONCLUSION: Cette étude comparative nous a permis de distinguer la signature physiologique, mais aussi psychologique, du soin du visage. Egalement, nos résultats suggèrent une implication des émotions positives dans l'amélioration de la relaxation physiologique. Ces observations contribuent à enrichir les rares données disponibles sur le profil spécifique du bien-être associé au soin du visage.


Subject(s)
Emotions , Face , Humans , Emotions/physiology , Skin Care , Facial Expression , Perception
11.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985566

ABSTRACT

Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential reactions in vivo, has a Py-2-C skeleton. Py-2-Cs can be chemically produced by the strong acid-catalyzed condensation of glucose and amino acid derivatives in vitro. These observations indicate the importance of the Py-2-C skeleton in vivo and suggest that molecules containing this skeleton have various biological functions. In this review, we have summarized Py-2-C derivatives based on their origins. We also discuss the structural characteristics, natural sources, and physiological activities of isolated compounds containing the Py-2-C group.


Subject(s)
Glucose , Pyrroles , Molecular Structure , Pyrroles/pharmacology , Pyrroles/chemistry , Fungi
12.
J Environ Manage ; 334: 117432, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36764192

ABSTRACT

Constructed wetlands (CWs) have been expected advantages in emerging pollutant removal, but with less known on their characteristic when treating wastewater containing graphene oxide (GO). In present study, we investigated characteristics of Iris pseudacorus, microorganisms, and pollutant removal in CWs with 60 cm and 37 cm water level (termed HCW and LCW). Plants in LCW had higher chlorophyll content and lower activities of antioxidant enzyme (superoxide dismutase, catalase, peroxidase) as well as malondialdehyde content. Substrate enzyme activities were affected by time and CW type. LCW increased only dehydrogenase activities, while HCW increased catalase, urease, neutral phosphatase, and arylsulfatase activities. Sequencing analysis revealed that microbial community showed higher richness and diversity in LCW, but this dissimilarity could be eased by time-effect. Proteobacteria (25.62-60.36%) and Actinobacteria (13.86-56.20%) were stable dominant phyla in CWs. Ratio of Proteobacteria/Acidobacteria indicated that trophic status of plant rhizosphere zone was lower in LCW. Nitrospirae were enriched to 0.16-0.68% and 0.75-1.42% in HCW and LCW. The enrichment of phyla Proteobacteria and Firmicutes in HCW was attributed to class Gammaproteobacteria and genus Enterococcus. GO transformation showed some reductions in CWs, which could be affected by water depth and substrate depth. Overall, HCW achieved nitrogen and phosphorus removal for 48.78-62.99% and 95.01%, which decreased by 8.41% and 7.31% in LCW. COD removal was less affected reaching 93%. This study could provide some new evidence for CWs to treat wastewater containing GO.


Subject(s)
Waste Disposal, Fluid , Wastewater , Catalase , Wetlands , Plants , Bacteria , Nitrogen/analysis
13.
Nat Prod Bioprospect ; 13(1): 3, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595079

ABSTRACT

Indole diterpenoids (IDTs) are an essential class of structurally diverse fungal secondary metabolites, that generally appear to be restricted to a limited number of fungi, such as Penicillium, Aspergillus, Claviceps, and Epichloe species, etc. These compounds share a typical core structure consisting of a cyclic diterpene skeleton of geranylgeranyl diphosphate (GGPP) and an indole ring moiety derived from indole-3-glycerol phosphate (IGP). 3-geranylgeranylindole (3-GGI) is the common precursor of all IDTs. On this basis, it is modified by cyclization, oxidation, and prenylation to generate a large class of compounds with complex structures. These compounds exhibit antibacterial, anti-insect, and ion channel inhibitory activities. We summarized 204 compounds of IDTs discovered from various fungi over the past 50 years, these compounds were reclassified, and their biological activities were summarized. This review will help to understand the structural diversity of IDTs and provide help for their physiological activities.

14.
Healthcare (Basel) ; 11(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36673588

ABSTRACT

Healthy lifestyle is one of the most important factors in the prevention of premature deaths, chronic diseases, productivity loss, obesity, and other economic and social aspects. The workplace plays an important role in promoting the physical activity and wellbeing of employees. Previous studies are mostly focused on individual interviews, various questionnaires that are a conceptual information about individual health state and might change according to question formulation, specialist competence, and other aspects. In this paper the work ability was mostly related to the employee's physiological state, which consists of three separate systems: cardiovascular, muscular, and neural. Each state consists of several exercises or tests that need to be performed one after another. The proposed data transformation uses fuzzy logic and different membership functions with three or five thresholds, according to the analyzed physiological feature. The transformed datasets are then classified into three stages that correspond to good, moderate, and poor health condition using machine learning techniques. A three-part Random Forest method was applied, where each part corresponds to a separate system. The obtained testing accuracies were 93%, 87%, and 73% for cardiovascular, muscular, and neural human body systems, respectively. The results indicate that the proposed work ability evaluation process may become a good tool for the prevention of possible accidents at work, chronic fatigue, or other health problems.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-990832

ABSTRACT

Retinal ganglion cells (RGCs) are final output neurons from the retina to the brain, which can transmit light signals and participate in image-forming vision (IFV) (image formation) and non-image-forming vision (NIFV) (non-image formation). Visual processing system not only transmits visual information of images, but also influences human physiological activities and behaviors by incoming optical signals, which is called NIFV.NIFV relies less on signals generated by conventional photoreceptor cells, but a special class of intrinsically photosensitive retinal ganglion cells (ipRGCs). ipRGCs are a subset of retinal ganglion cells that express melanopsin.The axons of the ipRGCs project to unique targets and modulate a broad range of NIFV behaviors, from basic physiological regulation (such as heart rate and pupil size) to more complex behavioral regulation (such as circadian rhythm) and even higher-level cognitive processes (such as anxiety and other emotions). NIFV circuit is an important response to light, and ipRGCs plays a vital role in NIFV circuit.This article reviewed the regulation of NIFV circuit in physiological activities and behaviors, summarized the relationship between the projections of ipRGCs to the NIFV function, and provided ophthalmologists with more knowledge of visual system.

16.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203405

ABSTRACT

Cotton growth and yield are severely affected by abiotic stress worldwide. Mepiquate chloride (MC) and melatonin (MT) enhance crop growth and yield by reducing the negative effects of abiotic stress on various crops. Numerous studies have shown the pivotal role of MC and MT in regulating agricultural growth and yield. Nevertheless, an in-depth review of the prominent performance of these two hormones in controlling plant morpho-physiological activity and yield in cotton under abiotic stress still needs to be documented. This review highlights the effects of MC and MT on cotton morpho-physiological and biochemical activities; their biosynthetic, signaling, and transduction pathways; and yield under abiotic stress. Furthermore, we also describe some genes whose expressions are affected by these hormones when cotton plants are exposed to abiotic stress. The present review demonstrates that MC and MT alleviate the negative effects of abiotic stress in cotton and increase yield by improving its morpho-physiological and biochemical activities, such as cell enlargement; net photosynthesis activity; cytokinin contents; and the expression of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. MT delays the expression of NCED1 and NCED2 genes involved in leaf senescence by decreasing the expression of ABA-biosynthesis genes and increasing the expression of the GhYUC5, GhGA3ox2, and GhIPT2 genes involved in indole-3-acetic acid, gibberellin, and cytokinin biosynthesis. Likewise, MC promotes lateral root formation by activating GA20x genes involved in gibberellin catabolism. Overall, MC and MT improve cotton's physiological activity and antioxidant capacity and, as a result, improve the ability of the plant to resist abiotic stress. The main purpose of this review is to present an in-depth analysis of the performance of MC and MT under abiotic stress, which might help to better understand how these two hormones regulate cotton growth and productivity.


Subject(s)
Gossypium , Melatonin , Gossypium/genetics , Melatonin/pharmacology , Chlorides , Antioxidants/pharmacology , Gibberellins , Cytokinins , Stress, Physiological
17.
Metabolites ; 12(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36557326

ABSTRACT

Pesticides as important agricultural inputs play a vital role in protecting crop plants from diseases and pests; however, the effect of pesticides on crop plant physiology and metabolism is still undefined. In this study, the effect of insecticide chlorpyrifos at three doses on rice plant physiology and metabolism was investigated. Our results revealed that chlorpyrifos cause oxidative stress in rice plants and even inhibit plant growth and the synthesis of protein and chlorophyll at high doses. The metabolomic results suggested that chlorpyrifos could affect the metabolic profiling of rice tissues and a total of 119 metabolites with significant changes were found, mainly including organic acids, amino acids, lipids, polyphenols, and flavonoids. Compared to the control, the content of glutamate family amino acids were significantly disturbed by chlorpyrifos, where defense-related proline and glutathione were significantly increased; however, glutamic acid, N-acetyl-glutamic acid and N-methyl-glutamic acid were significantly decreased. Many unsaturated fatty acids, such as linolenic acid and linoleic acid, and their derivatives lysophospholipids and phospholipids, were significantly accumulated in chlorpyrifos groups, which could act as osmolality substances to help rice cells relieve chlorpyrifos stress. Three organic acids, aminobenzoic acid, quinic acid, and phosphoenolpyruvic acid, involved in plant defenses, were significantly accumulated with the fold change ranging from 1.32 to 2.19. In addition, chlorpyrifos at middle- and high-doses caused the downregulation of most flavonoids. Our results not only revealed the effect of insecticide chlorpyrifos on rice metabolism, but also demonstrated the value of metabolomics in elucidating the mechanisms of plant responses to stresses.

18.
Antioxidants (Basel) ; 11(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36358586

ABSTRACT

Peanut (Arachis hypogaea L.) shell, an abundant by-product of peanut production, contains a complex combination of organic compounds, including flavonoids. Changes in the total phenolic content, flavonoid content, antioxidant capacities, and skin aging-related enzyme (tyrosinase, elastase, and collagenase)-inhibitory activities of peanut shell were investigated after treatment in pressure swing reactors under controlled gas conditions using surface dielectric barrier discharge with different plasma (NOx and O3) and temperature (25 and 150 °C) treatments. Plasma treatment under ozone-rich conditions at 150 °C significantly affected the total phenolic (270.70 mg gallic acid equivalent (GAE)/g) and flavonoid (120.02 mg catechin equivalent (CE)/g) contents of peanut shell compared with the control (253.94 and 117.74 mg CE/g, respectively) (p < 0.05). In addition, with the same treatment, an increase in functional compound content clearly enhanced the antioxidant activities of components in peanut shell extracts. However, the NOx-rich treatment was significantly less effective than the O3 treatment (p < 0.05) in terms of the total phenolic content, flavonoid content, and antioxidant activities. Similarly, peanut shells treated in the reactor under O3-rich plasma conditions at 150 ℃ had higher tyrosinase, elastase, and collagenase inhibition rates (55.72%, 85.69%, and 86.43%, respectively) compared to the control (35.81%, 80.78%, and 83.53%, respectively). Our findings revealed that a reactor operated with O3-rich plasma-activated gas at 150 °C was better-suited for producing functional industrial materials from the by-products of peanuts.

19.
Sensors (Basel) ; 22(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36015893

ABSTRACT

Flexible pressure sensors are essential components for wearable smart devices and intelligent systems. Significant progress has been made in this area, reporting on excellent sensor performance and fascinating sensor functionalities. Nevertheless, geometrical and morphological engineering of pressure sensors is usually neglected, which, however, is significant for practical application. Here, we present a digitized manufacturing methodology to construct a new class of iontronic pressure sensors with optionally defined configurations and widely modulated performance. These pressure sensors are composed of self-defined electrode patterns prepared by a screen printing method and highly tunable pressure-sensitive microstructures fabricated using 3D printed templates. Importantly, the iontronic pressure sensors employ an iontronic capacitive sensing mechanism based on mechanically regulating the electrical double layer at the electrolyte/electrode interfaces. The resultant pressure sensors exhibit high sensitivity (58 kPa-1), fast response/recovery time (45 ms/75 ms), low detectability (6.64 Pa), and good repeatability (2000 cycles). Moreover, our pressure sensors show remarkable tunability and adaptability in device configuration and performance, which is challenging to achieve via conventional manufacturing processes. The promising applications of these iontronic pressure sensors in monitoring various human physiological activities, fabricating flexible electronic skin, and resolving the force variation during manipulation of an object with a robotic hand are successfully demonstrated.


Subject(s)
Wearable Electronic Devices , Electrodes , Electrolytes , Humans , Pressure
20.
J Nutr Sci Vitaminol (Tokyo) ; 68(3): 162-171, 2022.
Article in English | MEDLINE | ID: mdl-35768247

ABSTRACT

In the history of modern nutritional science, understanding antioxidants is one of the major topics. In many cases, food-derived antioxidants have π conjugate or thiol group in their molecular structures because π conjugate stabilizes radical by its delocalization and two thiol groups form a disulfide bond in its antioxidative process. In recent years, antioxidant peptides have received much attention because for their ability to scavenge free radicals, inhibition of lipid peroxidation, chelation of transition metal ions, as well as their additional nutritional value. Among them, dipeptides are attracting much interest as post-amino acids, which have residues in common with amino acids, but also have different physiological properties and functions from those of amino acids. Especially, dipeptides containing moieties of several amino acid (tryptophan, tyrosine, histidine, cysteine, and methionine) possess potent antioxidant activity. This review summarizes previous details of structural property, radical scavenging activity, and biological activity of antioxidant dipeptide. Hopefully, this review will help provide a new insight into the study of the biological functions of antioxidant dipeptides.


Subject(s)
Antioxidants , Dipeptides , Amino Acids/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Dipeptides/chemistry , Dipeptides/metabolism , Dipeptides/pharmacology , Food Additives , Lipid Peroxidation , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...