Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 756
Filter
1.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189153, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986720

ABSTRACT

This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.

2.
Elife ; 132024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995818

ABSTRACT

Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino's chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino's chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.


Subject(s)
Chromatin , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone , Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , Phylogeny , Protein Binding , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Histones/metabolism , Histones/genetics , DNA/metabolism , DNA/genetics
3.
Front Neurosci ; 18: 1421675, 2024.
Article in English | MEDLINE | ID: mdl-39005845

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.

4.
Clin Genet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956960

ABSTRACT

Non-obstructive azoospermia (NOA) resulting from primary spermatogenic failure represents one of the most severe forms of male infertility, largely because therapeutic options are very limited. Beyond their diagnostic value, genetic tests for NOA also hold prognostic potential. Specifically, genetic diagnosis enables the establishment of genotype-testicular phenotype correlations, which, in some cases, provide a negative predictive value for testicular sperm extraction (TESE), thereby preventing unnecessary surgical procedures. In this study, we employed whole-genome sequencing (WGS) to investigate two generations of an Iranian family with NOA and identified a homozygous splicing variant in TDRKH (NM_001083965.2: c.562-2A>T). TDRKH encodes a conserved mitochondrial membrane-anchored factor essential for piRNA biogenesis in germ cells. In Tdrkh knockout mice, de-repression of retrotransposons in germ cells leads to spermatogenic arrest and male infertility. Previously, our team reported TDRKH involvement in human NOA cases through the investigation of a North African cohort. This current study marks the second report of TDRKH's role in NOA and human male infertility, underscoring the significance of the piRNA pathway in spermatogenesis. Furthermore, across both studies, we demonstrated that men carrying TDRKH variants, similar to knockout mice, exhibit complete spermatogenic arrest, correlating with failed testicular sperm retrieval.

5.
Dev Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39029469

ABSTRACT

The intermitochondrial cement (IMC) is a prominent germ granule that locates among clustered mitochondria in mammalian germ cells. Serving as a key platform for Piwi-interacting RNA (piRNA) biogenesis; however, how the IMC assembles among mitochondria remains elusive. Here, we identify that Tudor domain-containing 1 (TDRD1) triggers IMC assembly via phase separation. TDRD1 phase separation is driven by the cooperation of its tetramerized coiled-coil domain and dimethylarginine-binding Tudor domains but is independent of its intrinsically disordered region. TDRD1 is recruited to mitochondria by MILI and sequentially enhances mitochondrial clustering and triggers IMC assembly via phase separation to promote piRNA processing. TDRD1 phase separation deficiency in mice disrupts IMC assembly and piRNA biogenesis, leading to transposon de-repression and spermatogenic arrest. Moreover, TDRD1 phase separation is conserved in vertebrates but not in invertebrates. Collectively, our findings demonstrate a role of phase separation in germ granule formation and establish a link between membrane-bound organelles and membrane-less organelles.

6.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977960

ABSTRACT

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Gene Silencing , Germ Cells , Promoter Regions, Genetic , RNA, Small Interfering , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Drosophila Proteins/genetics , Drosophila/genetics , Argonaute Proteins/genetics
7.
Eur J Cell Biol ; 103(3): 151444, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39024988

ABSTRACT

Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.

8.
Andrology ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847152

ABSTRACT

BACKGROUND: PiRNA pathway factors, including evolutionarily conserved Tudor domain-containing proteins, play crucial roles in suppressing transposons and regulating post-meiotic gene expression. TDRD5 is essential for retrotransposon silencing and pachytene piRNA biogenesis; however, a causal link between TDRD5 variants and human infertility has not yet been established. OBJECTIVE: To identify the likely pathogenic variants of TDRD5 in infertile men, characterised by azoospermia or severe oligozoospermia. MATERIAL AND METHODS: Potential candidate variants were identified and confirmed using whole-exome and Sanger sequencing. Haematoxylin and eosin staining, immunofluorescence, and ultrastructural analyses were performed to investigate the structural and functional abnormalities of spermatozoa. The pathogenicity of the identified TDRD5 variants was verified using in vitro experiments. Functional effects of the C-terminal nonsense variant were assessed via histology, immunofluorescence staining, and small-RNA sequencing. Intracytoplasmic sperm injection (ICSI) was also performed to evaluate the efficacy of the clinical treatment. RESULTS: We identified a homozygous missense variant (c.3043G > A, p.A1015T) and a homozygous nonsense variant (c.2293G > T, p.E765*) of TDRD5 in two unrelated infertile men. Both patients exhibited severe oligoasthenoteratozoospermia, characterised by the presence of spermatozoa with multiple heads and/or flagella, as well as acrosomal hypoplasia. In vitro experiments revealed that the p.A1015T variant caused a diffuse distribution of TDRD5 granules, whereas the p.E765* variant led to the production of a C-terminal truncated protein with nuclear localisation, instead of the typical cytoplasmic localisation observed for the wild-type protein. Functional investigations also revealed that truncation of the C-terminal region of TDRD5 could potentially lead to a decline in the expression levels of intermitochondrial cement and chromatoid body components, such as MIWI (PIWIL1) and UPF1, and a slight decrease in the abundance of pachytene piRNA, ultimately resulting in compromised spermiogenesis. ICSI may be an effective treatment for these deficiencies. DISCUSSION AND CONCLUSION: This study implicates TDRD5 as a novel candidate gene in the pathogenesis of human male infertility, emphasising the contribution of piRNA pathway genes to male infertility. In addition, our data suggest that ICSI could be a promising treatment for infertile men harbouring TDRD5 variants.

9.
Insect Mol Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847568

ABSTRACT

In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.

10.
Cell Commun Signal ; 22(1): 347, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943141

ABSTRACT

PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.


Subject(s)
Immune System Diseases , RNA, Small Interfering , Humans , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Animals , Immune System Diseases/genetics , Immune System Diseases/metabolism , Piwi-Interacting RNA
11.
Mol Ecol ; 33(14): e17434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867501

ABSTRACT

Fem is a W-linked gene that encodes a piRNA precursor, and its product, Fem piRNA, is a master factor of female determination in Bombyx mori. Fem has low similarity to any known sequences, and the origin of Fem remains unclear. So far, two hypotheses have been proposed for the origin of Fem: The first hypothesis is that Fem is an allele of Masc, which assumes that the W chromosome was originally a homologous chromosome of the Z chromosome. The second hypothesis is that Fem arose by the transposition of Masc to the W chromosome. To explore the origin of Fem, we determined the W chromosome sequences of B. mori and, as a comparison, a closely relative bombycid species of Trilocha varians with a Fem-independent sex determination system. To our surprise, although the sequences of W and Z chromosomes show no homology to each other, a few pairs of homologues are shared by W and Z chromosomes, indicating the W chromosome of both species originated from Z chromosome. In addition, the W chromosome of T. varians lacks Fem, while the W chromosome of B. mori has over 100 copies of Fem. The high-quality assembly of the W chromosome of B. mori arose the third hypothesis about the origin of Fem: Fem is a chimeric sequence of multiple transposons. More than half of one transcriptional unit of Fem shows a significant homology to RTE-BovB. Moreover, the Fem piRNA-producing region could correspond to the boundary of the two transposons, gypsy and satellite DNA.


Subject(s)
Bombyx , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Female , Bombyx/genetics , Moths/genetics , RNA, Small Interfering/genetics , Evolution, Molecular , Chromosomes, Insect/genetics , Sequence Analysis, DNA , Phylogeny , Sex Determination Processes/genetics , Male
12.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891872

ABSTRACT

Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Drosophila simulans , RNA, Small Interfering , Animals , Female , Drosophila melanogaster/genetics , Male , Drosophila simulans/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , DNA Transposable Elements/genetics , Ovary/metabolism , Hybridization, Genetic , Oogenesis/genetics , Infertility/genetics , Crosses, Genetic , DEAD-box RNA Helicases
13.
Fish Shellfish Immunol ; 151: 109693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878913

ABSTRACT

Argonaute proteins are key constituents of small RNA-guided regulatory pathways. In crustaceans, members of the AGO subfamily of Argonaute proteins that play vital roles in immune defense are well studied, while proteins of the PIWI subfamily are less established. PmAgo4 of the black tiger shrimp, Penaeus monodon, though phylogenetically clustered with the AGO subfamily, has distinctive roles of the PIWI subfamily in safeguarding the genome from transposon invasion and controlling germ cell development. This study explored a molecular mechanism by which PmAgo4 regulates transposon expression in the shrimp germline. PmAgo4-associated small RNAs were co-immunoprecipitated from shrimp testis lysate using a PmAgo4-specific polyclonal antibody. RNA-seq revealed a majority of 26-27 nt long small RNAs in the PmAgo4-IP fraction suggesting that PmAgo4 is predominantly associated with piRNAs. Mapping of these piRNAs on nucleotide sequences of two gypsy and a mariner-like transposons of P. monodon suggested that most piRNAs were originated from the antisense strand of transposons. Suppression of PmAgo4 expression by a specific dsRNA elevated the expression levels of the three transposons while decreasing the levels of transposon-related piRNAs. Taken together, these results imply that PmAgo4 exerts its suppressive function on transposons by controlling the biogenesis of transposon-related piRNAs and thus, provides a defense mechanism against transposon invasion in shrimp germline cells.


Subject(s)
Argonaute Proteins , DNA Transposable Elements , Penaeidae , RNA, Small Interfering , Animals , Penaeidae/immunology , Penaeidae/genetics , DNA Transposable Elements/genetics , RNA, Small Interfering/genetics , Argonaute Proteins/genetics , Argonaute Proteins/immunology , Argonaute Proteins/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Piwi-Interacting RNA
14.
Virus Genes ; 60(4): 333-346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833149

ABSTRACT

P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.


Subject(s)
Argonaute Proteins , RNA, Small Interfering , Virus Diseases , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Humans , Virus Diseases/virology , Virus Diseases/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Animals , Virus Replication/genetics , Piwi-Interacting RNA
15.
Transl Oncol ; 45: 101990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735270

ABSTRACT

BACKGROUND: With regard to head and neck squamous cell carcinoma (HNSCC), its occurrence and advancement are controlled by genetic and epigenetic anomalies. PIWI-interacting RNAs (piRNAs) are recognized with significance in tumor, but the precise molecular mechanisms of piRNAs in HNSCC largely remain undisclosed. METHODS: Differentially expressed piRNAs were identified by RNA sequencing. The expression of piR-hsa-23533 was evaluated using quantitative real-time PCR and RNA in situ hybridization. The impacts of piR-hsa-23533 on the proliferation and apoptosis of HNSCC cells were investigated by a series of in vitro and in vivo assays. RESULTS: piR-hsa-23533 exhibits upregulation within HNSCC cells and tissues. Besides, piR-hsa-23533 overexpression promotes proliferation while inhibiting apoptosis in vitro and in vivo, while piR-hsa-23533 silencing has an opposite function. From the mechanistic perspective, piR-hsa-23533 can bind to Ubiquitin-specific protease 7 (USP7), as shown through RNA pull-down and RNA immunoprecipitation assays, promoting USP7 mRNA and protein expression. CONCLUSIONS: These findings highlight the functional importance of piR-hsa-23533 in HNSCC and may assist in the development of anti-HNSCC therapeutic target.

16.
Endocrine ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801599

ABSTRACT

INTRODUCTION: Micro- and macrovascular complications are common among persons with type 2 diabetes. Recently there has been growing interest to investigate the potential of circulating small non-coding RNAs (sncRNAs) as contributors to the development of diabetic complications. In this study we investigate to what extent circulating sncRNAs levels associate with prevalent diabetic kidney disease (DKD) in persons with type 2 diabetes. METHODS: Plasma sncRNAs levels were determined using small RNA-seq, allowing detection of miRNAs, snoRNAs, piRNAs, tRNA fragments, and various other sncRNA classes. We tested for differentially expressed sncRNAs in persons with type 2 diabetes, with DKD (n = 69) or without DKD (n = 405). In secondary analyses, we also tested the association with eGFR, albuminuria (UACR), and the plasma proteome. RESULTS: In total seven sncRNAs were negatively associated with prevalent DKD (all PFDR ≤ 0.05). Including one microRNA (miR-143-5p), five snoRNAs (U8, SNORD118, SNORD24, SNORD107, SNORD87) and a piRNA (piR-019825 | DQ597218). Proteomic analyses showed that the seven sncRNAs, and especially the piRNA piR-019825, were associated with plasma levels of 24 proteins of which several have known associations with kidney function including TNF sR-I (TNFRFS1A), DAN (NBL1) and cystatin C (CST3). CONCLUSION: We have identified novel small non-coding RNAs, primarily from classes other than microRNAs, that are associated with diabetic kidney disease. Our results show that the involvement of small non-coding RNAs in DKD goes beyond the already known microRNAs and also involves other classes of sncRNA, in particular snoRNAs and the piRNA piR-019825, that have never been studied before in relation to kidney function.

17.
Technol Cancer Res Treat ; 23: 15330338241249692, 2024.
Article in English | MEDLINE | ID: mdl-38706262

ABSTRACT

PURPOSE: PIWI-interacting RNAs (piRNAs) are a type of noncoding small RNA that can interact with PIWI-like RNA-mediated gene silencing (PIWIL) proteins to affect biological processes such as transposon silencing through epigenetic effects. Recent studies have found that piRNAs are widely dysregulated in tumors and associated with tumor progression and a poor prognosis. Therefore, this study aimed to investigate the effect of piR-1919609 on the proliferation, apoptosis, and drug resistance of ovarian cancer cells. METHODS: In this study, we used small RNA sequencing to screen and identify differentially expressed piRNAs in primary ovarian cancer, recurrent ovarian cancer, and normal ovaries. A large-scale verification study was performed to verify the expression of piR-1919609 in different types of ovarian tissue, including ovarian cancer tissue and normal ovaries, by RT-PCR and to analyze its association with the clinical prognosis of ovarian cancer. The expression of PIWILs in ovarian cancer was verified by RT-PCR, Western blotting and immunofluorescence. The effects of piR-1919609 on ovarian cancer cell proliferation, apoptosis and drug resistance were studied through in vitro and in vivo models. RESULTS: (1) piR-1919609 was highly expressed in platinum-resistant ovarian cancer tissues (p < 0.05), and this upregulation was significantly associated with a poor prognosis and a shorter recurrence time in ovarian cancer patients (p < 0.05). (2) PIWIL2 was strongly expressed in ovarian cancer tissues (p < 0.05). It was expressed both in the cytoplasm and nucleus of ovarian cancer cells. (3) Overexpression of piR-1919609 promoted ovarian cancer cell proliferation, inhibited apoptosis, and promoted tumor growth in nude mice. (4) Inhibition of piR-1919609 effectively reversed ovarian cancer drug resistance. CONCLUSION: In summary, we showed that piR-1919609 is involved in the regulation of drug resistance in ovarian cancer cells and might be an ideal potential target for reversing platinum resistance in ovarian cancer.


Subject(s)
Apoptosis , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , RNA, Small Interfering , Xenograft Model Antitumor Assays , Female , Humans , Drug Resistance, Neoplasm/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Cell Line, Tumor , RNA, Small Interfering/genetics , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Platinum/therapeutic use , Platinum/pharmacology
18.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793595

ABSTRACT

Transposons are integral genome constituents that can be domesticated for host functions, but they also represent a significant threat to genome stability. Transposon silencing is especially critical in the germline, which is dedicated to transmitting inherited genetic material. The small Piwi-interacting RNAs (piRNAs) have a deeply conserved function in transposon silencing in the germline. piRNA biogenesis and function are particularly well understood in Drosophila melanogaster, but some fundamental mechanisms remain elusive and there is growing evidence that the pathway is regulated in response to genotoxic and environmental stress. Here, we review transposon regulation by piRNAs and the piRNA pathway regulation in response to stress, focusing on the Drosophila female germline.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster , Gene Silencing , Germ Cells , RNA, Small Interfering , Stress, Physiological , Animals , DNA Transposable Elements/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Germ Cells/metabolism , Drosophila melanogaster/genetics , Female , Drosophila/genetics , Piwi-Interacting RNA
19.
Insect Mol Biol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728119

ABSTRACT

The prominent role of the P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway in animals is to silence transposable elements and maintain genome stability, ensuring proper gametogenesis in gonads. GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) is an evolutionarily conserved protein located on the outer mitochondrial membrane of germ cells and plays vital roles in the piRNA pathway and spermatogenesis in mammals. In the model insect Drosophila melanogaster, GASZ is essential for piRNA biogenesis and oogenesis, whereas its biological functions in non-drosophilid insects are still unknown. Here, we describe a comprehensive investigation of GASZ functions in the silkworm, Bombyx mori, a lepidopteran model insect, by using a binary transgenic CRISPR/Cas9 system. The BmGASZ mutation did not affect growth and development, but led to sterility in both males and females. Eupyrene sperm bundles of mutant males exhibited developmental defects, while the apyrene sperm bundles were normal, which were further confirmed through double copulation experiments with sex-lethal mutants, which males possess functional eupyrene sperm and abnormal apyrene sperm. In female mutant moths, ovarioles were severely degenerated and the eggs in ovarioles were deformed compared with that of wild type (WT). Further RNA-seq and RT-qPCR analysis revealed that amounts of piRNAs and transposon expression were dysregulated in gonads of mutants. In summary, this study has demonstrated vital roles of BmGASZ in gametogenesis through regulating the piRNA pathway in B. mori.

20.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38593715

ABSTRACT

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Subject(s)
Biosensing Techniques , Luminol , Zinc , Piwi-Interacting RNA , Luminescent Measurements/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...