Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.609
Filter
1.
Microb Cell Fact ; 23(1): 189, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956629

ABSTRACT

Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.


Subject(s)
Antineoplastic Agents , Coloring Agents , Silver , Textiles , Textiles/microbiology , Coloring Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Silver/pharmacology , Silver/chemistry , Fusarium/drug effects , Streptomyces/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Pigments, Biological/pharmacology , Pigments, Biological/biosynthesis , Microbial Sensitivity Tests , Cell Line, Tumor
2.
HCA Healthc J Med ; 5(2): 113-123, 2024.
Article in English | MEDLINE | ID: mdl-38984231

ABSTRACT

Description Porokeratosis was first described in 1893. It is a relatively rare disorder with over 9 subtypes. Lesions are clinically characterized as well-demarcated, erythematous papules (raised, <1 cm) or plaques (raised, >1 cm), with an atrophic center, and raised scaly border. Porokeratosis is an important diagnosis to identify because it may undergo malignant transformation and mimics many commonly encountered diagnoses. These commonly mimicked diagnoses include squamous cell carcinoma, tinea corporis, nummular dermatitis, and psoriasis vulgaris, to name a few. The clinical images in this review focus on identifying porokeratosis along the full spectrum of skin tones.

3.
Curr Dev Nutr ; 8(6): 103789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974349

ABSTRACT

Background: Lower density of carotenoids lutein and zeaxanthin (L/Z) in the macula (i.e., macular pigment) has been linked to greater risk for age-related eye disease. Objectives: We evaluated whether macular pigment optical density (MPOD) was associated with manifest primary open-angle glaucoma (POAG) among older women in the Carotenoids in Age-Related Eye Disease Study 2 (CAREDS2). Methods: MPOD was measured with customized heterochromatic flicker photometry in women who attended CAREDS2 (2016-2019) and CAREDS1 (2001-2004) study visits. Manifest POAG at CAREDS2 was assessed using visual fields, disc photos, optical coherence tomography, and medical records. Age-adjusted linear and logistic regression models were used to investigate the cross-sectional association between POAG and MPOD at CAREDS2, and MPOD measured 15 years earlier at CAREDS1. Results: Among 426 CAREDS2 participants (mean age: 80 y; range: 69-98 y), 26 eyes with manifest POAG from 26 participants were identified. Glaucomatous eyes had 25% lower MPOD compared to nonglaucomatous eyes [mean (SE): 0.40 (0.05) compared with 0.53 (0.01)] optical density units (ODU), respectively (P = 0.01). Compared with MPOD quartile 1, odds for POAG were lower for women in quartiles 2-4 (P-trend = 0.01). After excluding eyes with age-related macular degeneration, associations were similar but not statistically significant (P-trend = 0.16). Results were similar for MPOD measured at CAREDS1. Conclusions: Our results add to growing evidence that low MPOD may be a novel glaucoma risk factor and support further studies to assess the utility of dietary interventions for glaucoma prevention.

4.
J Am Acad Dermatol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980248

ABSTRACT

Tattooing, the introduction of exogenous pigments into the skin, has a rich history spanning thousands of years, with cultural, cosmetic, and medical significance. With the increasing prevalence of tattoos, understanding their potential complications and contraindications is of growing importance. The most common complications are hypersensitivity reactions, which may vary in morphology and timing. Infectious complications are often due to inadequate aseptic and hygienic practices during the tattooing process or healing period. Tattoo pigment can present diagnostic challenges, affecting cancer diagnosis and imaging. This CME article explores the history, cultural significance, epidemiology, chemistry, technique, contraindications, and complications of tattoos. Appreciating these factors can help individuals considering tattoos understand the safety and potential risks of their body art, and provide physicians with a thorough understanding of tattooing if consulted.

5.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987999

ABSTRACT

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Subject(s)
DNA Transposable Elements , Pigments, Biological , DNA Transposable Elements/genetics , Pigments, Biological/metabolism , Mutagenesis, Insertional/methods , Genetic Vectors/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Tryptophan/metabolism , Endophytes/genetics , Endophytes/metabolism
6.
Endocr Metab Immune Disord Drug Targets ; : e210224227253, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38988068

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS: A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS: We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION: Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.

8.
J Biomed Opt ; 29(Suppl 2): S22707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962492

ABSTRACT

Significance: Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim: To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach: AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels ( λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results: A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions: Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.


Subject(s)
Ophthalmoscopy , Retinal Pigment Epithelium , Humans , Ophthalmoscopy/methods , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/chemistry , Adult , Male , Female , Aging/physiology , Middle Aged , Aged , Young Adult , Optical Imaging/methods , Lipofuscin/metabolism , Lipofuscin/analysis , Lipofuscin/chemistry , Feasibility Studies
9.
Article in English | MEDLINE | ID: mdl-38963416

ABSTRACT

A Gram-stain-negative, red pigment-producing, aerobic, and rod-shaped bacterial strain (A2-2T) was isolated from a bleached scleractinian coral (Porites lutea). Strain A2-2T grew with 1.0-7.0 % (w/v) NaCl (optimum, 3.0 %), at pH 6.0-11.0 (optimum, pH 8.0), and at 18-41 °C (optimum, 35 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences suggested that strain A2-2T fell within the genus Spartinivicinus and was closely related to Spartinivicinus ruber S2-4-1HT (98.1 % sequence similarity) and Spartinivicinus marinus SM1973T (98.0 % sequence similarity). The predominant cellular fatty acids of strain A2-2T were C16 : 0 (31.0 %), summed feature 3 (29.0 %), summed feature 8 (11.7 %), C12 : 0 3-OH (6.4 %), and C10 : 0 3-OH (5.5 %), while the major respiratory quinone was Q-9. The polar lipids mainly comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid. The genome size of strain A2-2T was 6.8 Mb, with a G+C content of 40.2 mol%. The DNA-DNA hybridization value was 24.2 % between A2-2T and S. ruber S2-4-1HT and 36.9 % between A2-2T and S. marinus SM1973T, while the average nucleotide identity values were 80.1 and 88.8 %, respectively. Based on these findings, strain A2-2T could be recognized to represent a novel species of the genus Spartinivicinus, for which the name Spartinivicinus poritis sp. nov. is proposed. The type strain is A2-2T (=MCCC 1K08228T=KCTC 8323T).


Subject(s)
Anthozoa , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , Pigments, Biological , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Animals , Anthozoa/microbiology , DNA, Bacterial/genetics , Pigments, Biological/metabolism , Nucleic Acid Hybridization , Phospholipids
10.
Food Chem (Oxf) ; 9: 100209, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-38973987

ABSTRACT

This study conducted a combined transcriptomics and metabolomics analysis in premature and mature developmental stages of Gardenia jasminoides Ellis fruits to identify the molecular mechanisms of pigment synthesis. The transcriptomics data produced high-quality clean data amounting to 46.98 gigabytes, exhibiting a mapping ratio of 86.36% to 91.43%. Transcriptomics analysis successfully identified about 3,914 differentially expressed genes which are associated with pivotal biological processes, including photosynthesis, chlorophyll, biosynthetic processes, and protein-chromophore linkage pathways. Functional diversity was clarified by the Clusters of Orthologous Groups (COG) classification, which focused mainly on pigment synthesis functions. Pathways analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) revealed critical pathways affecting pigment development. Metabolomics studies were carried out utilizing Ultra Performance Liquid Chromatography and mass spectrometry (UPLC-MS). About 480 metabolites were detected via metabolomics investigation, the majority of that were significantly involved in pigment synthesis. Cluster and pathway analyses revealed the importance of pathways such as plant secondary metabolite biosynthesis, biosynthesis of phenylpropanoids and plant hormone signal transduction in pigment synthesis. Current research advances our comprehension of the underlying mechanisms at the molecular level governing pigment synthesis in gardenia fruits, furnishing valuable insights for subsequent investigations.

11.
Environ Pollut ; : 124503, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977122

ABSTRACT

Pot experiments were conducted using Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Phoebe bournei (Hemsl.) Yang) to investigate whether soil microplastics adversely affect the nurturing and renewal of plantations. Microplastics composed of polyethylene and polypropylene with a size of 48 µm were used. The treatments included a control group (without microplastics) and groups treated with microplastic concentrations of 1% and 2% (w/w). The effects of microplastics on the growth, photosynthetic pigments in leaves, antioxidant systems, and osmotic regulation substances of the seedlings were analysed by measuring the seedling height, ground-line diameter growth, chlorophyll (chlorophyll a, chlorophyll b, and total chlorophyll) contents, antioxidant enzyme (superoxide dismutase, peroxidase, catalase) activities, and malondialdehyde, soluble sugar, and soluble protein levels. The results indicated that treatment with 1% polyethylene microplastics increased the chlorophyll a, total chlorophyll, and soluble protein contents in the leaves of both types of seedlings while inhibiting superoxide dismutase and peroxidase activities in P. bournei seedlings. Treatment with 2% polyethylene or polypropylene microplastics suppressed the chlorophyll a, chlorophyll b, and total chlorophyll contents; superoxide dismutase, peroxidase, and catalase activities; and soluble sugar and soluble protein levels in the leaves of both types of seedlings, resulting in reduced growth in terms of height and ground-line diameter. The physiological effects of polyethylene microplastics were more evident than those of polypropylene at the same concentration. The results demonstrated that microplastics can affect photosynthesis, the antioxidant system, and osmotic regulation in Chinese fir and P. bournei seedlings, thereby inhibiting their normal growth and development. Exposure to 1% (w/w) microplastics triggered stress responses in seedlings, whereas 2% (w/w) microplastics impeded seedling growth.

12.
Nutr Neurosci ; : 1-13, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989695

ABSTRACT

ABSTRACTObjectives: Carotenoids are plant pigments that accumulate in human tissue (e.g. macula and skin) and can serve as biomarkers for diet quality; however, knowledge on skin and macular carotenoids in relation to cognition in children is limited. This study aimed to address this gap by assessing links between skin and macular carotenoids and academic achievement in school-aged children.Methods: Children 7-12 years old (n = 81) participated in a crosssectional study. Skin and macular carotenoids were measured with reflection spectroscopy and heterochromatic flicker photometry, respectively. Academic achievement was measured using Woodcock-Johnson IV (WJ-IV). Body Mass Index was calculated using height and weight measurements, demographic information was collected using a family demographics and pediatric health history questionnaire, and carotenoid intake was assessed using 7-day diet records.Results: Skin carotenoids were not related to macular pigment (r = 0.08, p = 0.22). Adjusting for age, sex, BMI percentile, household income, and total carotenoid consumption (mg/1000kcal), skin carotenoids were predictive of math (ß = 0.27, p = 0.02), broad math (ß = 0.36, p < 0.01) and math calculation (ß = 0.38, p < 0.01). Skin carotenoids displayed trending relationships with broad reading (ß = 0.23, p = 0.05) and reading fluency (ß = 0.22, p = 0.07). There were no significant associations between macular pigment and academic achievement (all ß's ≤ 0.07, all p's ≥ 0.56).Discussion: Skin carotenoids were positively associated with academic abilities in children, while macular carotenoids did not display this relationship. Future interventions examining prospective effects of changes in carotenoids in different tissues on childhood academic achievement are warranted.

13.
Cells ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38994953

ABSTRACT

The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.


Subject(s)
Cell Membrane , Light , Mitochondria , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Animals , Mitochondria/metabolism , Mice , Cell Membrane/metabolism , Mice, Inbred C57BL , Melanosomes/metabolism , Circadian Rhythm/physiology , Phagosomes/metabolism
14.
Article in English | MEDLINE | ID: mdl-38951986

ABSTRACT

A violet pigment (violacein) bacterial isolate AMA-5 was isolated from soil samples collected from Achanakmar Biosphere Reserve, Mungeli district, Chhattisgarh, India. The yield of biocolor from this isolate was screened in minimal medium after 48 h of incubation at 37°C ± 2°C temperature. The violet pigment was extracted in ethanol. It was also observed that ammonium chloride (2.5 g/1000 mL) as a nitrogen source is the best to enhance AMA-5 pigment production among other nitrogen sources (ammonium sulfate, tryptophan, ammonium iron sulfate, and peptone). The Sanger sequencing of 16S rDNA of strain AMA-5 showed similarity with Chromobacterium piscinae. From the available literature and research articles, it was assumed that this violet color pigment is violacein. It was further verified by conducting high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR) analysis. The violet biocolor that extracted was used in cotton and polyester fabric dyeing. After the fabrics treated with sodium chloride as a mordant were completely dried, it was identified that the color was solidifying. Overall study showed that C. piscinae AMA-5 has good potential for production of violacein, which is the most important industrial natural dye used to add color to textile products.

15.
FASEB J ; 38(13): e23792, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953555

ABSTRACT

Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.


Subject(s)
Fibrosis , Mice, Knockout , Retinal Pigment Epithelium , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Mice , Fibrosis/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/drug therapy , Retina/metabolism , Retina/pathology , Epithelial-Mesenchymal Transition/drug effects , Mice, Inbred C57BL
16.
Braz J Microbiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954221

ABSTRACT

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.

17.
Food Chem ; 458: 140216, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38970958

ABSTRACT

In addition to their pigment properties, the potential health benefits of anthocyanins have made them a subject of interest in recent years. This study aimed to obtain purified anthocyanin fractions from native Mexican black bean cultivars using Amberlite XAD-7 resin column and HPCCC and evaluate their anti-inflammatory properties using RAW 264.7 cells. The major anthocyanins in the purified anthocyanin fractions were delphinidin 3-glucoside (61.8%), petunidin 3-glucoside (25.2%), and malvidin 3-glucoside (12.2%). Purified anthocyanin fractions at 12.5 µg/mL effectively prevented LPS-induced ERK1/ERK2 phosphorylation and reduced the protein expression of COX-2 and mRNA expression of iNOS. Results showed that purified anthocyanin fractions have the potential to modulate the inflammatory response by inhibiting the production of pro-inflammatory mediators through the ERK1/ERK2 and NF-κB pathways. This study suggests that anthocyanins from black beans could be used as a natural strategy to help modulate inflammation-associated diseases.

18.
Cureus ; 16(5): e60755, 2024 May.
Article in English | MEDLINE | ID: mdl-38903341

ABSTRACT

Congenital simple hamartoma of the retinal pigment epithelium (CSHRPE) is a rare benign tumor often detected incidentally during routine eye exams. We present a case of multifocal CSHRPE in a 32-year-old Hispanic woman, emphasizing the diagnostic challenges posed by its presentation and the pivotal role of multimodal imaging in accurate diagnosis. Despite initial difficulties due to a history of trauma and pigmented fundus, advanced imaging techniques, including optical coherence tomography (OCT), OCT angiography (OCTA), fluorescein angiography (FA), and indocyanine green angiography (ICGA), facilitated a precise diagnosis. Notably, OCTA revealed high signal intensity and flow at the largest nodule site while FA and ICGA exhibited characteristic blockage patterns. Moreover, smaller nodules exhibited OCT findings supporting the theory of islands of retinal pigment epithelium (RPE) cells proliferating ectopically within the retina. Our case underscores the importance of comprehensive imaging assessment in distinguishing CSHRPE from other lesions, contributing to a deeper understanding of this rare ocular condition.

19.
Front Cell Infect Microbiol ; 14: 1410385, 2024.
Article in English | MEDLINE | ID: mdl-38903940

ABSTRACT

Introduction: Stenotrophomonas is a prominent genus owing to its dual nature. Species of this genus have many applications in industry and agriculture as plant growth-promoting rhizobacteria and microbial biological control agents, whereas species such as Stenotrophomonas maltophilia are considered one of the leading gram-negative multi-drug-resistant bacterial pathogens because of their high contribution to the increase in crude mortality and significant clinical challenge. Pathogenic Stenotrophomonas species and most clinical isolates belong to the Stenotrophomonas maltophilia complex (SMc). However, a strain highly homologous to S. terrae was isolated from a patient with pulmonary tuberculosis (TB), which aroused our interest, as S. terrae belongs to a relatively distant clade from SMc and there have been no human association reports. Methods: The pathogenicity, immunological and biochemical characteristics of 610A2T were systematically evaluated. Results: 610A2T is a new species of genus Stenotrophomonas, which is named as Stenotrophomonas pigmentata sp. nov. for its obvious brown water-soluble pigment. 610A2T is pathogenic and caused significant weight loss, pulmonary congestion, and blood transmission in mice because it has multiple virulence factors, haemolysis, and strong biofilm formation abilities. In addition, the cytokine response induced by this strain was similar to that observed in patients with TB, and the strain was resistant to half of the anti-TB drugs. Conclusions: The pathogenicity of 610A2T may not be weaker than that of S. maltophilia. Its isolation extended the opportunistic pathogenic species to all 3 major clades of the genus Stenotrophomonas, indicating that the clinical importance of species of Stenotrophomonas other than S. maltophilia and potential risks to biological safety associated with the use of Stenotrophomonas require more attention.


Subject(s)
Biofilms , Gram-Negative Bacterial Infections , Phylogeny , Stenotrophomonas , Stenotrophomonas/isolation & purification , Stenotrophomonas/genetics , Stenotrophomonas/classification , Stenotrophomonas/pathogenicity , Animals , Gram-Negative Bacterial Infections/microbiology , Biofilms/growth & development , Mice , Virulence Factors/genetics , RNA, Ribosomal, 16S/genetics , Humans , DNA, Bacterial/genetics , Sequence Analysis, DNA , Disease Models, Animal , Hemolysis , Bacterial Typing Techniques
20.
Int J Ophthalmol ; 17(6): 1018-1027, 2024.
Article in English | MEDLINE | ID: mdl-38895677

ABSTRACT

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

SELECTION OF CITATIONS
SEARCH DETAIL
...