Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Ecotoxicol Environ Saf ; 280: 116567, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850700

ABSTRACT

Toxoplasma gondii is an opportunistic and pathogenic obligate intracellular parasitic protozoan that is widespread worldwide and can infect most warm-blooded animals, seriously endangering human health and affecting livestock production. Toxoplasmosis caused by T. gondii infection has different clinical manifestations, which are mainly determined by the virulence of T. gondii and host differences. Among the manifestations of this condition, abortion, stillbirth, and fetal malformation can occur if a woman is infected with T. gondii in early pregnancy. Here, we discuss how the T. gondii rhoptry protein affects host pregnancy outcomes and speculate on the related signaling pathways involved. The effects of rhoptry proteins of T. gondii on the placental barrier are complex. Rhoptry proteins not only regulate interferon-regulated genes (IRGs) to ensure the survival of parasites in activated cells but also promote the spread of worms in tissues and the invasive ability of the parasites. The functions of these rhoptry proteins and the associated signaling pathways highlight relevant mechanisms by which Toxoplasma crosses the placental barrier and influences fetal development and will guide future studies to uncover the complexity of the host-pathogen interactions.


Subject(s)
Placenta , Protozoan Proteins , Signal Transduction , Toxoplasma , Toxoplasmosis , Female , Placenta/parasitology , Pregnancy , Toxoplasma/physiology , Animals , Humans , Toxoplasmosis/parasitology , Pregnancy Complications, Parasitic/parasitology
2.
Diseases ; 12(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38920546

ABSTRACT

BACKGROUND: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. METHODS: A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. RESULTS: During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. CONCLUSIONS: Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.

3.
Environ Sci Technol ; 58(18): 7770-7781, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38665120

ABSTRACT

A computational framework based on placental gene networks was proposed in this work to improve the accuracy of the placental exposure risk assessment of environmental compounds. The framework quantitatively characterizes the ability of compounds to cross the placental barrier by systematically considering the interaction and pathway-level information on multiple placental transporters. As a result, probability scores were generated for 307 compounds crossing the placental barrier based on this framework. These scores were then used to categorize the compounds into different levels of transplacental transport range, creating a gradient partition. These probability scores not only facilitated a more intuitive understanding of a compound's ability to cross the placental barrier but also provided valuable information for predicting potential placental disruptors. Compounds with probability scores greater than 90% were considered to have significant transplacental transport potential, whereas those with probability scores less than 80% were classified as unlikely to cross the placental barrier. Furthermore, external validation set results showed that the probability score could accurately predict the compounds known to cross the placental barrier. In conclusion, the computational framework proposed in this study enhances the intuitive understanding of the ability of compounds to cross the placental barrier and opens up new avenues for assessing the placental exposure risk of compounds.


Subject(s)
Environmental Pollutants , Placenta , Pregnancy , Female , Placenta/metabolism , Humans , Risk Assessment , Environmental Exposure
4.
Ann Clin Biochem ; : 45632241239806, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38428946

ABSTRACT

BACKGROUND: Carnitine is essential for fatty acid metabolism. Free carnitine (FCA) is excreted in the urine in the glomerulus, but is partly reabsorbed by a carnitine transporter. The mechanism underlying the decrease in serum carnitine level during pregnancy is unclear. OBJECTIVE: To investigate whether low carnitine level is associated with increased renal excretion in pregnant women. METHODS: We recruited 43 healthy pregnant and 25 non-pregnant women. Total carnitine (TCA) and FCA levels were measured using the enzymatic cycling method, and the acylcarnitine (ACA) level was calculated. Fractional excretion (FE) was calculated as carnitine clearance divided by creatinine clearance. RESULTS: The mean TCA, FCA, and ACA levels were lower at 12 weeks of gestation in pregnant than non-pregnant women (P < .001); the levels decreased further at 36 weeks, reaching 39%, 36%, and 52% of those in non-pregnant women, respectively (P < .001). The FEs were 3-4-fold higher in pregnant women than non-pregnant women. Pregnant women had a lower serum FCA/TCA ratio than non-pregnant women (0.788 ± 0.098 vs 0.830 ± 0.074, respectively; P < .05), whereas the urine FCA/TCA ratio was similar between the groups. CONCLUSION: Low carnitine level is associated with increased renal excretion during late pregnancy.

5.
J Adv Res ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38382594

ABSTRACT

INTRODUCTION: Global warming augments the risk of adverse pregnancy outcomes in vulnerable expectant mothers. Pioneering investigations into heat stress (HS) have predominantly centered on its direct impact on reproductive functions, while the potential roles of gut microbiota, despite its significant influence on distant tissues, remain largely unexplored. Our understanding of deleterious mechanisms of HS and the development of effective intervention strategies to mitigate the detrimental impacts are still limited. OBJECTIVES: In this study, we aimed to explore the mechanisms by which melatonin targets gut microbes to alleviate HS-induced reproductive impairment. METHODS: We firstly evaluated the alleviating effects of melatonin supplementation on HS-induced reproductive disorder in pregnant mice. Microbial elimination and fecal microbiota transplantation (FMT) experiments were then conducted to confirm the efficacy of melatonin through regulating gut microbiota. Finally, a lipopolysaccharide (LPS)-challenged experiment was performed to verify the mechanism by which melatonin alleviates HS-induced reproductive impairment. RESULTS: Melatonin supplementation reinstated gut microbiota in heat stressed pregnant mice, reducing LPS-producing bacteria (Aliivibrio) and increasing beneficial butyrate-producing microflora (Butyricimonas). This restoration corresponded to decreased LPS along the maternal gut-placenta-fetus axis, accompanied by enhanced intestinal and placental barrier integrity, safeguarding fetuses from oxidative stress and inflammation, and ultimately improving fetal weight. Further pseudo-sterile and fecal microbiota transplantation trials confirmed that the protective effect of melatonin on fetal intrauterine growth under HS was partially dependent on gut microbiota. In LPS-challenged pregnant mice, melatonin administration mitigated placental barrier injury and abnormal angiogenesis via the inactivation of the TLR4/MAPK/VEGF signaling pathway, ultimately leading to enhanced nutrient transportation in the placenta and thereby improving the fetal weight. CONCLUSION: Melatonin alleviates HS-induced low fetal weight during pregnancy via the gut-placenta-fetus axis, the first time highlighting the gut microbiota as a novel intervention target to mitigate the detrimental impact of global temperature rise on vulnerable populations.

6.
Pharm Res ; 41(3): 493-500, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337105

ABSTRACT

PURPOSE: In order to ensure that drug administration is safe during pregnancy, it is crucial to have the possibility to predict the placental permeability of drugs in humans. The experimental method which is most widely used for the said purpose is in vitro human placental perfusion, though the approach is highly expensive and time consuming. Quantitative structure-activity relationship (QSAR) modeling represents a powerful tool for the assessment of the drug placental transfer, and can be successfully employed to be an alternative in in vitro experiments. METHODS: The conformation-independent QSAR models covered in the present study were developed through the use of the SMILES notation descriptors and local molecular graph invariants. What is more, the Monte Carlo optimization method, was used in the test sets and the training sets as the model developer with three independent molecular splits. RESULTS: A range of different statistical parameters was used to validate the developed QSAR model, including the standard error of estimation, mean absolute error, root-mean-square error (RMSE), correlation coefficient, cross-validated correlation coefficient, Fisher ratio, MAE-based metrics and the correlation ideality index. Once the mentioned statistical methods were employed, an excellent predictive potential and robustness of the developed QSAR model was demonstrated. In addition, the molecular fragments, which are derived from the SMILES notation descriptors accounting for the decrease or increase in the investigated activity, were revealed. CONCLUSION: The presented QSAR modeling can be an invaluable tool for the high-throughput screening of the placental permeability of drugs.


Subject(s)
Placenta , Quantitative Structure-Activity Relationship , Female , Pregnancy , Humans , Models, Molecular , Monte Carlo Method , Permeability
7.
Reprod Toxicol ; 123: 108523, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092131

ABSTRACT

Understanding drug transport across the placental barrier is important for assessing the potential fetal drug toxicity and birth defect risks. Current in vivo and in vitro models have structural and functional limitations in evaluating placental drug transfer and toxicity. Microphysiological systems (MPSs) offer more accurate and relevant physiological models of human tissues and organs on a miniature scale for drug development and toxicology testing. MPSs for the placental barrier have been recently explored to study placental drug transfer. We utilized a multilayered hydrogel membrane-based microphysiological model composed of human placental epithelial and endothelial cells to replicate the key structure and function of the human placental barrier. A macroscale human placental barrier model was created using a transwell to compare the results with the microphysiological model. Placental barrier models were characterized by assessing monolayer formation, intercellular junctions, barrier permeability, and their structural integrity. Three small-molecule drugs (glyburide, rifaximin, and caffeine) that are prescribed or taken during pregnancy were studied for their placental transfer. The results showed that all three drugs crossed the placental barrier, with transfer rates in the following order: glyburide (molecular weight, MW = 494 Da) < rifaximin (MW = 785.9 Da) < caffeine (MW = 194.19 Da). Using non-compartmental analysis, we estimated human pharmacokinetic characteristics based on in vitro data from both MPS and transwell models. While further research is needed, our findings suggest that MPS holds potential as an in vitro tool for studying placental drug transfer and predicting fetal exposure, offering insights into pharmacokinetics.


Subject(s)
Glyburide , Placenta , Humans , Pregnancy , Female , Endothelial Cells , Caffeine , Rifaximin
8.
J Pharm Sci ; 113(2): 486-492, 2024 02.
Article in English | MEDLINE | ID: mdl-37981232

ABSTRACT

Tadalafil, a phosphodiesterase 5 (PDE5) inhibitor, is a candidate therapeutic agent for fetal growth restriction and hypertensive disorders of pregnancy. In this study, we elucidated the fetal transfer of tadalafil in comparison with that of sildenafil, the first PDE5 inhibitor to be approved. We also examined the contributions of multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) to fetal transfer. Tadalafil or sildenafil was administered to wild-type, Mdr1a/b-double-knockout or Bcrp-knockout pregnant mice by continuous infusion from gestational day (GD) 14.5 to 17.5, and the fetal-to-maternal plasma concentration ratio of unbound drug (unbound F/M ratio) was evaluated at GD 17.5. The values of unbound F/M ratio of tadalafil and sildenafil in wild-type mice were 0.80 and 1.6, respectively. The unbound F/M ratio of tadalafil was increased to 1.1 and 1.7 in Mdr1a/b-knockout and Bcrp-knockout mice, respectively, while the corresponding values for sildenafil were equal to or less than that in wild-type mice, respectively. A transcellular transport study revealed that basal-to-apical transport of both tadalafil and sildenafil was significantly higher than transport in the opposite direction in MDCKII-BCRP cells. Our research reveals that tadalafil is a newly identified substrate of human and mouse BCRP, and it appears that the fetal transfer of tadalafil is, at least in part, attributed to the involvement of BCRP within the placental processes in mice. The transfer of sildenafil to the fetus was not significantly constrained by BCRP, even though sildenafil was indeed a substantial substrate for BCRP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Maternal-Fetal Exchange , Phosphodiesterase 5 Inhibitors , Placenta , Sildenafil Citrate , Tadalafil , Animals , Female , Humans , Mice , Pregnancy , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Mice, Knockout , Phosphodiesterase 5 Inhibitors/pharmacokinetics , Placenta/metabolism , Sildenafil Citrate/pharmacokinetics , Tadalafil/pharmacokinetics
9.
BMC Pregnancy Childbirth ; 23(1): 867, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104073

ABSTRACT

BACKGROUND: Hypertensive disorders complicating pregnancy (HDCP) and gestational diabetes mellitus (GDM) can affect the placental barrier function to varying degrees. However, current studies show that the transfer and distribution characteristics of trace elements in the maternal-fetal system are still unclear. This study investigated the effect of the placental barrier on the transfer of trace elements from mother to fetus and its relationship with HDCP and GDM. METHODS: A case-control method was used in this study. 140 pairs of samples were collected; 60 were from healthy pregnant women, and 80 were from patients with pregnancy complications. The contents of trace elements in paired samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). SPSS software was used to analyze the differences in trace element levels in matched samples of each group. The correlations were analyzed based on Pearson's correlation factor (r). RESULTS: The distribution characteristics of Fe content in the pathological group (HDCP group and GDM group) were the same as those in the normal group (umbilical cord blood > maternal blood > placenta), but there was no significant difference in the iron content in maternal blood and cord blood of pathological group. The distribution characteristics of Mn content in the pathological group (placenta > umbilical cord blood > maternal blood) were changed compared with those in the normal group (placenta > maternal blood > umbilical cord blood). In addition, the placental Cr content and cord blood Cr and Ni content of the pathological group were higher than those of the normal group. HDCP placental Cr and GDM placental Fe levels were significantly correlated with the Apgar score. CONCLUSIONS: The transfer of Fe and Mn and the placental barrier function of Cr and Ni in the maternal-fetal system of HDCP and GDM are significantly altered, which directly or indirectly increases the maternal and fetal health risk.


Subject(s)
Diabetes, Gestational , Hypertension, Pregnancy-Induced , Trace Elements , Pregnancy , Female , Humans , Placenta , Fetus , Fetal Blood/chemistry
10.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 3985-4003, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37877386

ABSTRACT

Listeria monocytogenes is recognized as a significant foodborne pathogen, capable of causing listeriosis in humans, which is a global public health concern. This pathogen is particularly dangerous for pregnant women, as it can lead to invasive listeriosis in fetuses and neonates, posing a significant threat to both maternal and fetal health. Therefore, establishing suitable in vitro and in vivo models for L. monocytogenes placenta infection, as well as analyzing and exploring the infection process and its pathogenic mechanism, are important approaches to prevent and control L. monocytogenes infection in mothers and infants. In this study, we reviewed the in vitro and in vivo placental models used for studying the infection of L. monocytogenes in maternal and infant, summarized and discussed the advantages and limitations of each model, and explored the potential of in vitro cell models and organoids for the study of L. monocytogenes infection. This paper aims to support the study of the infection pathway and pathogenesis of listeriosis and provide scientific references for the prevention and control of L. monocytogenes infection.


Subject(s)
Listeria monocytogenes , Listeriosis , Female , Humans , Pregnancy , Listeriosis/prevention & control , Placenta/pathology , Public Health , Infant, Newborn
11.
Microb Pathog ; 185: 106392, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852552

ABSTRACT

Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.


Subject(s)
Pregnancy Complications, Infectious , Syphilis, Congenital , Syphilis , Infant, Newborn , Pregnancy , Female , Humans , Treponema pallidum , Syphilis, Congenital/diagnosis , Syphilis, Congenital/epidemiology , Syphilis, Congenital/pathology , Placenta/pathology , Pregnancy Complications, Infectious/pathology , Stillbirth
12.
J Clin Med ; 12(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445348

ABSTRACT

Quantification of fetal drug exposure remains challenging since sampling from the placenta or fetus during pregnancy is too invasive. Currently existing in vivo (e.g., cord blood sampling) and ex vivo (e.g., placenta perfusion) models have inherent limitations. A placenta-on-a-chip model is a promising alternative. A systematic search was performed in PubMed on 2 February 2023, and Embase on 14 March 2023. Studies were included where placenta-on-a-chip was used to investigate placental physiology, placenta in different obstetric conditions, and/or fetal exposure to maternally administered drugs. Seventeen articles were included that used comparable approaches but different microfluidic devices and/or different cultured maternal and fetal cell lines. Of these studies, four quantified glucose transfer, four studies evaluated drug transport, three studies investigated nanoparticles, one study analyzed bacterial infection and five studies investigated preeclampsia. It was demonstrated that placenta-on-a-chip has the capacity to recapitulate the key characteristics of the human placental barrier. We aimed to identify knowledge gaps and provide the first steps towards an overview of current protocols for developing a placenta-on-a-chip, that facilitates comparison of results from different studies. Although models differ, they offer a promising approach for in vitro human placental and fetal drug studies under healthy and pathological conditions.

13.
Toxins (Basel) ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: mdl-37235346

ABSTRACT

Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species' differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal-fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 µM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment.


Subject(s)
Aflatoxin B1 , Mycotoxins , Animals , Female , Pregnancy , Humans , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Placenta/metabolism , DNA Damage , Mycotoxins/metabolism , Liver/metabolism
14.
J Agric Food Chem ; 71(18): 6846-6858, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37122089

ABSTRACT

Sows are highly sensitive to deoxynivalenol (DON) and susceptible to reproductive toxicity caused by oxidative stress, but the potential mechanisms and effective interventions remain unclear. Here, we investigated the role of two antioxidants (cysteamine and N-acetyl-cysteine) in regulating the reproductive performance, redox status, and placental barrier function of sows and their potential mechanisms under DON exposure. Maternal dietary supply of antioxidants from day 85 of gestation to parturition reduced the incidence of stillbirths and low-birth-weight piglets under DON exposure. Moreover, the alleviation of DON-induced reproductive toxicity by dietary antioxidants was associated with the alleviation of placental oxidative stress, the enhancement of the placental barrier, and the vascular function of sows. Furthermore, in vivo and in vitro vascularized placental barrier modeling further demonstrated that antioxidants could reverse both DON transport across the placenta and DON-induced increase of placental barrier permeability. The molecular mechanism of antioxidant resistance to DON toxicity may be related to the signal transducer and activator of the transcription-3-occludin/zonula occludens-1 signaling pathway. Collectively, these results demonstrate the potential of antioxidants to protect the mother from DON-induced reproductive toxicity by alleviating placental oxidative stress and enhancing the placental barrier.


Subject(s)
Cysteamine , Placenta , Pregnancy , Animals , Female , Swine , Placenta/metabolism , Cysteamine/metabolism , Cysteamine/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/metabolism , Oxidative Stress
15.
Expert Rev Neurother ; 23(2): 141-156, 2023 02.
Article in English | MEDLINE | ID: mdl-36731825

ABSTRACT

INTRODUCTION: For women with epilepsy of reproductive age, antiseizure medications (ASMs) are associated with an increased risk of offspring malformations. There are safety concerns for most anti-seizure medications in the perinatal period, and there is a clear need to identify safe medications. ASMs must transport through biological barriers to exert toxic effects on the fetus, and transporters play essential roles in trans-barrier drug transport. Therefore, it is vital to understand the distribution and properties of ASM-related transporters in biological barriers. AREAS COVERED: This study reviews the structure, transporter distribution, and properties of the blood-brain, placental, and blood-milk barrier, and summarizes the existing evidence for the trans-barrier transport mechanism of ASMs and standard experimental models of biological barriers. EXPERT OPINION: Ideal ASMs in the perinatal period should have the following characteristics: 1) Increased transport through the blood-brain barrier, and 2) Reduced transport of the placental and blood-milk barriers. Thus, only low-dose or almost no antiseizure medication could enter the fetus's body, which could decrease medication-induced fetal abnormalities. Based on the stimulated structure and molecular docking, we propose a development strategy for new ASMs targeting transporters of biological barriers to improve the perinatal treatment of female patients with epilepsy.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Placenta , Female , Humans , Pregnancy , Anticonvulsants/adverse effects , Blood-Brain Barrier , Molecular Docking Simulation , Guidelines as Topic
16.
Chinese Journal of Biotechnology ; (12): 3985-4003, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008007

ABSTRACT

Listeria monocytogenes is recognized as a significant foodborne pathogen, capable of causing listeriosis in humans, which is a global public health concern. This pathogen is particularly dangerous for pregnant women, as it can lead to invasive listeriosis in fetuses and neonates, posing a significant threat to both maternal and fetal health. Therefore, establishing suitable in vitro and in vivo models for L. monocytogenes placenta infection, as well as analyzing and exploring the infection process and its pathogenic mechanism, are important approaches to prevent and control L. monocytogenes infection in mothers and infants. In this study, we reviewed the in vitro and in vivo placental models used for studying the infection of L. monocytogenes in maternal and infant, summarized and discussed the advantages and limitations of each model, and explored the potential of in vitro cell models and organoids for the study of L. monocytogenes infection. This paper aims to support the study of the infection pathway and pathogenesis of listeriosis and provide scientific references for the prevention and control of L. monocytogenes infection.


Subject(s)
Female , Humans , Pregnancy , Infant, Newborn , Listeria monocytogenes , Listeriosis/prevention & control , Placenta/pathology , Public Health
17.
Biomedicines ; 12(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38255166

ABSTRACT

Explosive developments in mRNA vaccine technology in the last decade have made it possible to achieve great success in clinical trials of mRNA vaccines to prevent infectious diseases and develop cancer treatments and mRNA-based gene therapy products. The approval of the mRNA-1273 and BNT162b2 mRNA vaccines against SARS-CoV-2 by the U.S. Food and Drug Administration has led to mass vaccination (with mRNA vaccines) of several hundred million people around the world, including children. Despite its effectiveness in the fight against COVID-19, rare adverse effects of the vaccination have been shown in some studies, including vascular microcirculation disorders and autoimmune and allergic reactions. The biodistribution of mRNA vaccines remains one of the most poorly investigated topics. This mini-review discussed the results of recent experimental studies on humans and rodents regarding the biodistribution of mRNA vaccines, their constituents (mRNA and lipid nanoparticles), and their encoded antigens. We focused on the dynamics of the biodistribution of mRNA vaccine products and on the possibility of crossing the blood-brain and blood-placental barriers as well as transmission to infants through breast milk. In addition, we critically assessed the strengths and weaknesses of the detection methods that have been applied in these articles, whose results' reliability is becoming a subject of debate.

18.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499435

ABSTRACT

Thyroid hormone is essential for fetal (brain) development. Plasma membrane transporters control the intracellular bioavailability of thyroid hormone. In the past few decades, 15 human thyroid hormone transporters have been identified, and among them, mutations in monocarboxylate transporter (MCT)8 and organic anion transporting peptide (OATP)1C1 are associated with clinical phenotypes. Different animal and human models have been employed to unravel the (patho)-physiological role of thyroid hormone transporters. However, most studies on thyroid hormone transporters focus on postnatal development. This review summarizes the research on the thyroid hormone transporters in pregnancy and fetal development, including their substrate preference, expression and tissue distribution, and physiological and pathophysiological role in thyroid homeostasis and clinical disorders. As the fetus depends on the maternal thyroid hormone supply, especially during the first half of pregnancy, the review also elaborates on thyroid hormone transport across the human placental barrier. Future studies may reveal how the different transporters contribute to thyroid hormone homeostasis in fetal tissues to properly facilitate development. Employing state-of-the-art human models will enable a better understanding of their roles in thyroid hormone homeostasis.


Subject(s)
Organic Anion Transporters , Symporters , Animals , Female , Humans , Pregnancy , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Symporters/genetics , Placenta/metabolism , Thyroid Hormones/metabolism , Fetal Development , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
19.
BMC Bioinformatics ; 22(Suppl 10): 629, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138350

ABSTRACT

BACKGROUND: The placental barrier protects the fetus from exposure to some toxicants and is vital for drug development and risk assessment of environmental chemicals. However, in vivo experiments for assessing the placental barrier permeability of chemicals is not ethically acceptable. Although ex vivo placental perfusion methods provide good alternatives for the assessment of placental barrier permeability, the application to a large number of test chemicals could be time- and resource-consuming. Computational prediction models for ex vivo placental barrier permeability are therefore desirable. METHODS: A total of 87 chemicals and corresponding 1444 physicochemical properties were divided into training and test datasets. Three types of algorithms including linear regression, random forest, and ensemble models were applied to develop prediction models for ex vivo placental barrier permeability. RESULTS: Among the tested models, the ensemble model integrating the previous two methods performed best for predicting ex vivo human placental barrier permeability with correlation coefficients of 0.887 and 0.825 when considering the applicability domain. An additional test on seven newly curated chemicals from the literature showed a good correlation coefficient of 0.879 which was further improved to 0.921 by considering the variation of experiments. CONCLUSION: In this study, the first valid predicting model for ex vivo human placental barrier permeability was developed following the OECD guideline. The model is expected to be useful for assessing the human placental barrier permeability and can be integrated with developmental toxicity prediction models for investigating the toxic effects of chemicals on the fetus.


Subject(s)
Algorithms , Placenta , Female , Humans , Machine Learning , Permeability , Pregnancy
20.
EBioMedicine ; 81: 104095, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35671622

ABSTRACT

BACKGROUND: Remdesivir was the first prodrug approved to treat coronavirus disease 2019 (COVID-19) and has the potential to be used during pregnancy. However, it is not known whether remdesivir and its main metabolite, GS-441524 have the potential to cross the blood-placental barrier. We hypothesize that remdesivir and predominant metabolite GS-441524may cross the blood-placental barrier to reach the embryo tissues. METHODS: To test this hypothesis, ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) coupled with multisite microdialysis was used to monitor the levels of remdesivir and the nucleoside analogue GS-441524 in the maternal blood, fetus, placenta, and amniotic fluid of pregnant Sprague-Dawley rats. The transplacental transfer was evaluated using the pharmacokinetic parameters of AUC and mother-to-fetus transfer ratio (AUCfetus/AUCmother). FINDINGS: Our in-vivo results show that remdesivir is rapidly biotransformed into GS-441524 in the maternal blood, which then readily crossed the placenta with a mother-to-fetus transfer ratio of 0.51 ± 0.18. The Cmax and AUClast values of GS-441524 followed the order: maternal blood > amniotic fluid > fetus > placenta in rats. INTERPRETATION: While remdesivir does not directly cross into the fetus, however, its main metabolite, GS-441524 readily crosses the placenta and can reside there for at least 4 hours as shown in the pregnant Sprague-Dawley rat model. These findings suggest that careful consideration should be taken for the use of remdesivir in the treatment of COVID-19 in pregnancy. FUNDING: Ministry of Science and Technology of Taiwan.


Subject(s)
COVID-19 Drug Treatment , Pregnancy Complications, Infectious , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amniotic Fluid , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biotransformation , Female , Fetus/metabolism , Furans/metabolism , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pyrroles/metabolism , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...