Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Plants (Basel) ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514302

ABSTRACT

The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.

2.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501394

ABSTRACT

Soil salinity is a condition that limits crop growth and productivity, and soil-dwelling bacteria from halophytic plant roots may be a viable strategy to cope with low productivity due to salt stress. Halophilic and halotolerant bacteria of the root soil of Sesuvium verrucosum were analyzed in this study as there is little evidence regarding its associated microbiology. Soil was sampled from the roots of Sesuvium verrucosum to obtain the cultivable bacteria. Their morphological characteristics were identified and they were molecularly identified by the 16S sequence. The growth capacity of the bacteria was determined at different levels of pH and salinity, and several growth promotion characteristics were identified, such as phosphorus solubilization, indole acetic acid production by the tryptophan-dependent (AIAt) and tryptophan-independent (IAA) pathways, ammonium production from organic sources, solubilization of carbonates, and zinc and sodium capture capacity. In addition, the bacteria that presented the best characteristics for germination variables of Solanum lycopersicum were evaluated. A total of 20 bacteria from root soil of Sesuvium verrucosum Raf. belonging to the phyla Proteobacteria (50%), Firmicutes (45%) and Actinobacteria (5%) were identified, with each one having different morphological characteristics. Among the bacterial isolates, 45% had the ability to resist different levels of salinity and pH, ranging from 0 to 20% of NaCl, and pH between 5 and 11. Moreover, these bacteria had the capacity to solubilize carbonates, phosphorus and zinc, capture sodium, produce ammonium from organic substrates and IAA (indole acetic acid), and promote enzymatic activity of amylases, proteases, lipases and cellulases. The bacteria evaluated on the germination of Solanum lycopersicum had an influence on germination at different salinity levels, with greater influence at 100 mM NaCl. This demonstrated that halophilic bacteria belonging to the rhizosphere of Sesuvium verrucosum have the ability to promote growth in extreme salinity conditions, making them candidates for the recovery of productivity in saline soils.

3.
World J Microbiol Biotechnol ; 37(10): 164, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34458956

ABSTRACT

Eucalyptus is the main species for the forestry industry in Brazil. Biotechnology and, more recently, gene editing offer significant opportunities for rapid improvements in Eucalyptus breeding programs. However, the recalcitrance of Eucalyptus species to in vitro culture is also a major limitation for commercial deployment of biotechnology techniques in Eucalyptus improvement. We evaluated various clones of Eucalyptus urophylla for their in vitro regeneration potential identified a clone, BRS07-01, with considerably higher regeneration rate (85%) in organogenesis, and significantly higher than most works described in literature. Endophytic bacteria are widely reported to improve in vitro plant growth and development. Hence, we believe that inclusion of endophytic plant growth promoting bacteria enhanced was responsible for the improved plantlets growth and development of this clone under in vitro culture. Metagenomic analysis was performed to isolate and characterize the prominent endophytic bacteria on BRS07-01 leaf tissue in vitro micro-cultures, and evaluate their impact on plant growth promotion. The analysis revealed the presence of the phyla Firmicutes (35%), Proteobacteria (30%) and much smaller quantities of Actinobacteria, Bacteroidetes, Gemmatimonadetes, Crenarchaeota, Euryarchaeota and Acidobacteria. Of the thirty endophytic bacterial strains isolated, eleven produced indole-3-acetic acid. Two of the isolates were identified as Enterobacter sp. and Paenibacillus polymyxa, which are nitrogen-fixing and capable of phosphate and produce ammonium. These isolates also showed similar positive effects on the germination of common beans (Phaseolus spp.). The isolates will now be tested as a growth promoter in Eucalyptus in vitro cultures. Graphical abstract for the methodology using cultivation independent and dependent methodologies to investigate the endophytic bacteria community from in vitro Eucalyptus urophylla BRS07-01.


Subject(s)
Bacteria/isolation & purification , Endophytes/isolation & purification , Eucalyptus/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Brazil , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/metabolism , Eucalyptus/growth & development , Indoleacetic Acids/metabolism , Metagenomics , Phylogeny , Plant Leaves/growth & development , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics
4.
Rev. colomb. biotecnol ; 23(1): 6-16, ene.-jun. 2021. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1289176

ABSTRACT

RESUMEN Las rizobacterias forman parte de la gran cantidad de microorganismos que actúan como agentes de biocontrol, produciendo metabolitos que inducen resistencia sistémica en las plantas que inhiben el crecimiento de patógenos. El objetivo de esta investigación fue evaluar la capacidad de diez rizobacterias de los géneros Rhizobium, Bradyrhizobium, Sinorhizobium, Ochrobactrum y Pseudomonas para producir ácido cianhídrico (HCN), sideróforos y ácido indol-acético (AIA), disolver fosfato, fijar nitrógeno e inhibir el crecimiento de fitopatógenos. Se realizaron todas las pruebas fisiológicas y bioquímicas correspondientes, así como la prueba de antagonismo in vitro contra los fitopatógenos Fusarium oxysporum, Colletotrichum gloeosporioides y Rhizoctonia solani. Cinco cepas produjeron una mayor cantidad de AIA en relación a las otras en presencia de triptófano, la cepa ES1 (Ochrobactrum sp.) produjo HCN, el 50 % de las cepas evaluadas liberaron sideróforos, el 60 % disolvió fósforo, y todas resultaron positivas para la fijación de nitrógeno. Nueve cepas inhibieron el crecimiento de F. oxysporum entre 40 % y 65 %, la cepa Alf (Pseudomonas fluorescens) inhibió además el crecimiento de C. gloeosporioides en un 22 %, y ninguna inhibió el crecimiento de R. solani. Los rizobios evaluados y la cepa de Pseudomonas fluorescens podrían ejercer efectos beneficiosos sobre las plantas a través de mecanismos directos e indirectos, o una combinación de ambos, lo que las convierte en una opción sostenible para la producción de cultivos.


ABSTRACT Rhizobacteria are part of the large number of microorganisms that act as biocontrol agents, producing metabolites that induce systemic resistance in plants and inhibit the growth of pathogens. The objective of this research was to evaluate the capacity of ten rhizobacteria of the genera Rhizobium, Bradyrhizobium, Sinorhizobium, Ochrobactrum and Pseudomonas to produce hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA), dissolve phosphate, fix nitrogen and inhibit the growth of phytopathogens. All the corresponding physiological and biochemical tests were carried out, in addition to an in vitro antagonism test against the phytopathogens Fusarium oxysporum, Colletotrichum gloeosporioides and Rhizoctonia solani. Five strains produced a greater amount of IAA with respect to the others in the presence of tryptophan, the strain ES1 (Ochrobactrum sp.) produced HCN, 50% of the evaluated strains released siderophores, 60% solubilized phosphorus and all were positive for nitrogen fixation. Nine strains inhibited the growth of F. oxysporum by 40% to 65%. The Alf strain (Pseudomonas fluorescens) inhibited the growth of C. gloeosporioides by 22% while none inhibited the growth of R. solani. The rhizobia tested and the Pseudomonas fluorescens strain may have favorable effects on plants through direct and indirect mechanisms, or a combination of both, making them a sustainable option for crop production.

5.
Molecules ; 26(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672045

ABSTRACT

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Charcoal/chemistry , Charcoal/pharmacology , Gas Chromatography-Mass Spectrometry , Plant Development/drug effects , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Biological Assay , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Shoots/anatomy & histology , Plant Shoots/drug effects , Seeds/drug effects , Zea mays/drug effects , Zea mays/growth & development
6.
Rev Argent Microbiol ; 53(1): 78-83, 2021.
Article in English | MEDLINE | ID: mdl-32891499

ABSTRACT

The detection of characteristics associated with plant growth promotion has been studied frequently on bacteria and some of these detection methods were also used on yeasts. Sometimes, these methods, designed for prokaryotes, were used with no prior analysis regarding growth and production on eukaryotes. The aim of the present study was to assess and select the best suitable media for the detection of auxin-like compound production and inorganic-P solubilization on yeast strains. Already published media and new formulations, as well as yeasts with different genetic backgrounds were used for the comparison. Media were selected based on the adequate growth of yeast strains and reliable recognition of the studied features either by an easy detection of the metabolite (color or halo production) or simple medium preparation (low number of reagent and regular autoclaving). We propose here the use of the new DEV medium with glucose and with tryptophan to identify auxin-like compounds producers; and CPM medium (a variation from Custer's Chalk Medium) as base medium to identify yeasts capable of inorganic-P solubilization.


Subject(s)
Indoleacetic Acids , Phosphates , Culture Media , Soil , Yeasts
7.
Ciênc. rural (Online) ; 51(09): 1-13, 2021. tab, graf
Article in English | VETINDEX | ID: biblio-1480202

ABSTRACT

Plant growth analysis can be used for soybean plants evaluation to identify morphologic changes caused by soil microbes after seed inoculation. The objective was to measure changes of inoculated soybean plants grown under regular field Brazilian production conditions. The experiment was carried out to compare 5 inoculation treatments: T1 (Bradyrhizobium japonicum and B. diazoefficiens), T2 (T1 and Azospirillum brasilense), T3 (T1 and Trichoderma asperellum), T4 (T1 and T. virens, and Bacillus amyloliquefaciens) and T5 (T1 and Penicillum bilaiae). Leaf area, shoot and root dry matter were measured at vegetative and reproductive growth stages. Results of this study validate the contribution of plant growth analysis of soybeans plants for identifying their responses promoted by the combined inoculation of their seeds with selected microbes. Also, the microbial effects on plant growth vary not only between microbes but also between parts of the plants and through the plant development stages. The introduction of different microbes in soybean rhizosphere combined with Bradyrhizobium sp. strains can contribute to increase crop dry matter productivity during its growing cycle.


Análise de crescimento de plantas pode ser utilizada para avaliação de plantas e identificação de mudanças causadas por microrganismos de solo, depois de serem inoculados nas sementes. O objetivo deste estudo foi medir as mudanças no crescimento de plantas de soja inoculadas em condição de cultivos extensivos de campo no Brasil. O experimento foi conduzido para comparar cinco tratamentos inoculados: T1 (Bradyrhizobium japonicum e B. diazoefficiens), T2 (T1 e Azospirillum brasilense), T3 (T1 e Trichoderma asperellum), T4 (T1 and T. virens, e Bacillus amyloliquefaciens) e T5 (T1 e Penicillum bilaiae). A área foliar e a massa seca da parte aérea e de raízes foram medidas nos estádios vegetativos e reprodutivos. Os resultados validam a contribuição da análise de crescimento de plantas de soja para identificar as respostas causadas pela inoculação de sementes com combinação de microrganismos selecionados. Os efeitos dos microrganismos no crescimento das plantas não variam apenas entre os microrganismos, mas também entre as partes das plantas e ao longo do seu desenvolvimento. A introdução de diferentes micróbios na rizosfera de soja, combinados com cepas de Bradyrhizobium sp. pode aumentar a produtividade de massa seca das culturas durante o seu ciclo de crescimento.


Subject(s)
Plant Development/drug effects , Plants/drug effects , Glycine max/growth & development
8.
Ciênc. rural (Online) ; 51(9): e20190642, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1153927

ABSTRACT

ABSTRACT: Plant growth analysis can be used for soybean plants evaluation to identify morphologic changes caused by soil microbes after seed inoculation. The objective was to measure changes of inoculated soybean plants grown under regular field Brazilian production conditions. The experiment was carried out to compare 5 inoculation treatments: T1 (Bradyrhizobium japonicum and B. diazoefficiens), T2 (T1 and Azospirillum brasilense), T3 (T1 and Trichoderma asperellum), T4 (T1 and T. virens, and Bacillus amyloliquefaciens) and T5 (T1 and Penicillum bilaiae). Leaf area, shoot and root dry matter were measured at vegetative and reproductive growth stages. Results of this study validate the contribution of plant growth analysis of soybeans plants for identifying their responses promoted by the combined inoculation of their seeds with selected microbes. Also, the microbial effects on plant growth vary not only between microbes but also between parts of the plants and through the plant development stages. The introduction of different microbes in soybean rhizosphere combined with Bradyrhizobium sp. strains can contribute to increase crop dry matter productivity during its growing cycle.


RESUMO: Análise de crescimento de plantas pode ser utilizada para avaliação de plantas e identificação de mudanças causadas por microrganismos de solo, depois de serem inoculados nas sementes. O objetivo deste estudo foi medir as mudanças no crescimento de plantas de soja inoculadas em condição de cultivos extensivos de campo no Brasil. O experimento foi conduzido para comparar cinco tratamentos inoculados: T1 (Bradyrhizobium japonicum e B. diazoefficiens), T2 (T1 e Azospirillum brasilense), T3 (T1 e Trichoderma asperellum), T4 (T1 and T. virens, e Bacillus amyloliquefaciens) e T5 (T1 e Penicillum bilaiae). A área foliar e a massa seca da parte aérea e de raízes foram medidas nos estádios vegetativos e reprodutivos. Os resultados validam a contribuição da análise de crescimento de plantas de soja para identificar as respostas causadas pela inoculação de sementes com combinação de microrganismos selecionados. Os efeitos dos microrganismos no crescimento das plantas não variam apenas entre os microrganismos, mas também entre as partes das plantas e ao longo do seu desenvolvimento. A introdução de diferentes micróbios na rizosfera de soja, combinados com cepas de Bradyrhizobium sp. pode aumentar a produtividade de massa seca das culturas durante o seu ciclo de crescimento.

9.
Ci. Rural ; 51(9)2021.
Article in English | VETINDEX | ID: vti-761819

ABSTRACT

ABSTRACT: Plant growth analysis can be used for soybean plants evaluation to identify morphologic changes caused by soil microbes after seed inoculation. The objective was to measure changes of inoculated soybean plants grown under regular field Brazilian production conditions. The experiment was carried out to compare 5 inoculation treatments: T1 (Bradyrhizobium japonicum and B. diazoefficiens), T2 (T1 and Azospirillum brasilense), T3 (T1 and Trichoderma asperellum), T4 (T1 and T. virens, and Bacillus amyloliquefaciens) and T5 (T1 and Penicillum bilaiae). Leaf area, shoot and root dry matter were measured at vegetative and reproductive growth stages. Results of this study validate the contribution of plant growth analysis of soybeans plants for identifying their responses promoted by the combined inoculation of their seeds with selected microbes. Also, the microbial effects on plant growth vary not only between microbes but also between parts of the plants and through the plant development stages. The introduction of different microbes in soybean rhizosphere combined with Bradyrhizobium sp. strains can contribute to increase crop dry matter productivity during its growing cycle.


RESUMO: Análise de crescimento de plantas pode ser utilizada para avaliação de plantas e identificação de mudanças causadas por microrganismos de solo, depois de serem inoculados nas sementes. O objetivo deste estudo foi medir as mudanças no crescimento de plantas de soja inoculadas em condição de cultivos extensivos de campo no Brasil. O experimento foi conduzido para comparar cinco tratamentos inoculados: T1 (Bradyrhizobium japonicum e B. diazoefficiens), T2 (T1 e Azospirillum brasilense), T3 (T1 e Trichoderma asperellum), T4 (T1 and T. virens, e Bacillus amyloliquefaciens) e T5 (T1 e Penicillum bilaiae). A área foliar e a massa seca da parte aérea e de raízes foram medidas nos estádios vegetativos e reprodutivos. Os resultados validam a contribuição da análise de crescimento de plantas de soja para identificar as respostas causadas pela inoculação de sementes com combinação de microrganismos selecionados. Os efeitos dos microrganismos no crescimento das plantas não variam apenas entre os microrganismos, mas também entre as partes das plantas e ao longo do seu desenvolvimento. A introdução de diferentes micróbios na rizosfera de soja, combinados com cepas de Bradyrhizobium sp. pode aumentar a produtividade de massa seca das culturas durante o seu ciclo de crescimento.

10.
Ci. Rural ; 51(09): 1-13, 2021. tab, graf
Article in English | VETINDEX | ID: vti-32000

ABSTRACT

Plant growth analysis can be used for soybean plants evaluation to identify morphologic changes caused by soil microbes after seed inoculation. The objective was to measure changes of inoculated soybean plants grown under regular field Brazilian production conditions. The experiment was carried out to compare 5 inoculation treatments: T1 (Bradyrhizobium japonicum and B. diazoefficiens), T2 (T1 and Azospirillum brasilense), T3 (T1 and Trichoderma asperellum), T4 (T1 and T. virens, and Bacillus amyloliquefaciens) and T5 (T1 and Penicillum bilaiae). Leaf area, shoot and root dry matter were measured at vegetative and reproductive growth stages. Results of this study validate the contribution of plant growth analysis of soybeans plants for identifying their responses promoted by the combined inoculation of their seeds with selected microbes. Also, the microbial effects on plant growth vary not only between microbes but also between parts of the plants and through the plant development stages. The introduction of different microbes in soybean rhizosphere combined with Bradyrhizobium sp. strains can contribute to increase crop dry matter productivity during its growing cycle.(AU)


Análise de crescimento de plantas pode ser utilizada para avaliação de plantas e identificação de mudanças causadas por microrganismos de solo, depois de serem inoculados nas sementes. O objetivo deste estudo foi medir as mudanças no crescimento de plantas de soja inoculadas em condição de cultivos extensivos de campo no Brasil. O experimento foi conduzido para comparar cinco tratamentos inoculados: T1 (Bradyrhizobium japonicum e B. diazoefficiens), T2 (T1 e Azospirillum brasilense), T3 (T1 e Trichoderma asperellum), T4 (T1 and T. virens, e Bacillus amyloliquefaciens) e T5 (T1 e Penicillum bilaiae). A área foliar e a massa seca da parte aérea e de raízes foram medidas nos estádios vegetativos e reprodutivos. Os resultados validam a contribuição da análise de crescimento de plantas de soja para identificar as respostas causadas pela inoculação de sementes com combinação de microrganismos selecionados. Os efeitos dos microrganismos no crescimento das plantas não variam apenas entre os microrganismos, mas também entre as partes das plantas e ao longo do seu desenvolvimento. A introdução de diferentes micróbios na rizosfera de soja, combinados com cepas de Bradyrhizobium sp. pode aumentar a produtividade de massa seca das culturas durante o seu ciclo de crescimento.(AU)


Subject(s)
Glycine max/growth & development , Plants/drug effects , Plant Development/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL