Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Biotechnol J ; 19(7): e2400164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014928

ABSTRACT

Iterative metabolic engineering of Fusarium fujikuroi has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer F. fujikuroi to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in F. fujikuroi. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (tHMGR), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.


Subject(s)
CRISPR-Cas Systems , Fusarium , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Fusarium/genetics , Plasmids/genetics , Metabolic Engineering/methods , Genetic Markers/genetics
2.
Appl Microbiol Biotechnol ; 108(1): 400, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951186

ABSTRACT

Over the past years, several methods have been developed for gene cloning. Choosing a cloning strategy depends on various factors, among which simplicity and affordability have always been considered. The aim of this study, on the one hand, is to simplify gene cloning by skipping in vitro assembly reactions and, on the other hand, to reduce costs by eliminating relatively expensive materials. We investigated a cloning system using Escherichia coli harboring two plasmids, pLP-AmpR and pScissors-CmR. The pLP-AmpR contains a landing pad (LP) consisting of two genes (λ int and λ gam) that allow the replacement of the transformed linear DNA using site-specific recombination. After the replacement process, the inducible expressing SpCas9 and specific sgRNA from the pScissors-CmR (CRISPR/Cas9) vector leads to the removal of non-recombinant pLP-AmpR plasmids. The function of LP was explored by directly transforming PCR products. The pScissors-CmR plasmid was evaluated for curing three vectors, including the origins of pBR322, p15A, and pSC101. Replacing LP with a PCR product and fast-eradicating pSC101 origin-containing vectors was successful. Recombinant colonies were confirmed following gene replacement and plasmid curing processes. The results made us optimistic that this strategy may potentially be a simple and inexpensive cloning method. KEY POINTS: •The in vivo cloning was performed by replacing the target gene with the landing pad. •Fast eradication of non-recombinant plasmids was possible by adapting key vectors. •This strategy is not dependent on in vitro assembly reactions and expensive materials.


Subject(s)
Cloning, Molecular , Escherichia coli , Plasmids , Polymerase Chain Reaction , Recombination, Genetic , Escherichia coli/genetics , Cloning, Molecular/methods , Plasmids/genetics , Polymerase Chain Reaction/methods , Genetic Vectors/genetics , CRISPR-Cas Systems
3.
J Microbiol Methods ; 222: 106959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782300

ABSTRACT

Salmonella enterica serovar Infantis (S. infantis) is an important emerging pathogen, associated with poultry and poultry products and related to an increasing number of human infections in many countries. A concerning trend among S. infantis isolates is the presence of plasmid-mediated multidrug resistance. In many instances, the genes responsible for this resistance are carried on a megaplasmid known as the plasmid of emerging S. infantis (pESI) or pESI like plasmids. Plasmids can be remarkably stable due to the presence of multiple replicons and post-segregational killing systems (PSKs), which contribute to their maintenance within bacterial populations. To enhance our understanding of S. infantis and its multidrug resistance determinants toward the development of new vaccination strategies, we have devised a new method for targeted plasmid curing. This approach effectively overcomes plasmid addiction by leveraging the temporal overproduction of specific antitoxins coupled with the deletion of the partition region. By employing this strategy, we successfully generated a plasmid-free strain from a field isolate derived from S. infantis 119,944. This method provides valuable tools for studying S. infantis and its plasmid-borne multidrug resistance mechanisms and can be easily adopted for plasmid curing from other related bacteria.


Subject(s)
Drug Resistance, Multiple, Bacterial , Plasmids , Poultry , Salmonella enterica , Plasmids/genetics , Animals , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Poultry/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Serogroup , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology
4.
Front Microbiol ; 15: 1356206, 2024.
Article in English | MEDLINE | ID: mdl-38591037

ABSTRACT

P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.

5.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255919

ABSTRACT

4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the ß-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.


Subject(s)
Butyrates , Catechols , Micrococcaceae , Parabens
6.
Biomolecules ; 13(10)2023 10 23.
Article in English | MEDLINE | ID: mdl-37892243

ABSTRACT

The CRISPR-Cas system has been widely used for genome editing due to its convenience, simplicity and flexibility. Using a plasmid-carrying Cas protein and crRNA or sgRNA expression cassettes is an efficient strategy in the CRISPR-Cas genome editing system. However, the plasmid remains in the cells after genome editing. Development of general plasmid-curing strategies is necessary. Based on our previous CRISPR-Cpf1 genome-editing system in Saccharomyces cerevisiae, the crRNA, designed for the replication origin of the CRISPR-Cpf1 plasmid, and the ssDNA, as a template for homologous recombination, were introduced for plasmid curing. The efficiency of the plasmid curing was 96 ± 4%. In addition, we further simplified the plasmid curing system by transforming only one crRNA into S. cerevisiae, and the curing efficiency was about 70%. In summary, we have developed a CRISPR-mediated plasmid-curing system. The RNA-only plasmid curing system is fast and easy. This plasmid curing strategy can be applied in broad hosts by designing crRNA specific for the replication origin of the plasmid. The plasmid curing system via CRISPR-Cas editing technology can be applied to produce traceless products without foreign genes and to perform iterative processes in multiple rounds of genome editing.


Subject(s)
Gene Editing , Saccharomyces cerevisiae , Gene Editing/methods , Plasmids/genetics , RNA/metabolism , RNA, Guide, CRISPR-Cas Systems , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Environ Sci Pollut Res Int ; 30(49): 107681-107692, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37740157

ABSTRACT

Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.


Subject(s)
Bivalvia , Vibrio parahaemolyticus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Vibrio parahaemolyticus/genetics , Seafood/microbiology , Drug Resistance, Bacterial/genetics , Ampicillin
8.
Vet Microbiol ; 284: 109833, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515979

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that causes a severe intestinal infection including hemolytic uremic syndrome in humans. Various factors contribute to its pathogenesis, including a large virulence plasmid pO157. This F-like 92-kb plasmid is isolated in virtually all clinical EHEC isolates, and is considered a hallmark of EHEC virulence. A previous report stated that removal of pO157 from EHEC ATCC 43894 induced overexpression of GadAB that are essential in glutamate-dependent acid resistance (GDAR) system, yet the mechanism remains elusive. Based on this observation, we surmised that pO157 is involved in the regulation of GDAR system. We comparatively analyzed 43894 and its pO157-cured (ΔpO157) mutant 277 for i) their acid resistance, ii) changes in the transcriptional profiles and iii) expression of GDAR associated genes/proteins. Survivability of 43894 upon exposure to acidic conditions was significantly lower than the ΔpO157 mutant. In addition, RNA-sequencing revealed that genes involved in GDAR were significantly down-regulated in 43894 when compared to the ΔpO157 mutant. Exogenous expression of GadE in 43894 led to expression of GadAB, suggesting possible intervention of pO157 in GDAR regulation. Despite these findings, reintroduction of pO157 into 277 did not reverted Gad overexpression. Likewise, removing pO157 from 43894 using the plasmid incompatibility method did not induce Gad overexpression as shown in 277. Taken together, the results suggest that variation in acid resistance among EHEC isolates exists, and the large virulence plasmid pO157 has no effect on weak acid resistance phenotype displayed in 43894.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Humans , Animals , Virulence/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Plasmids/genetics , Escherichia coli O157/genetics , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/veterinary
9.
Microb Cell Fact ; 22(1): 112, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308875

ABSTRACT

Bifidobacteria are representative intestinal probiotics that have extremely high application value in the food and medical fields. However, the lack of molecular biology tools limits the research on functional genes and mechanisms of bifidobacteria. The application of an accurate and efficient CRISPR system to genome engineering can fill the gap in efficient genetic tools for bifidobacteria. In this study, CRISPR system of B. animalis AR668 was established, which successfully knocked out gene 0348 and gene 0208. The influence of different homology arms and fragments on the knockout effect of the system was explored. In addition, the inducible plasmid curing system of bifidobacteria was innovatively established. This study contributes to the genetic modification and functional mechanism analysis of bifidobacteria.


Subject(s)
Bifidobacterium animalis , Probiotics , CRISPR-Cas Systems , Bifidobacterium , Gene Editing
10.
Microbiology (Reading) ; 169(5)2023 05.
Article in English | MEDLINE | ID: mdl-37226834

ABSTRACT

Antimicrobial resistance (AMR) genes are widely disseminated on plasmids. Therefore, interventions aimed at blocking plasmid uptake and transfer may curb the spread of AMR. Previous studies have used CRISPR-Cas-based technology to remove plasmids encoding AMR genes from target bacteria, using either phage- or plasmid-based delivery vehicles that typically have narrow host ranges. To make this technology feasible for removal of AMR plasmids from multiple members of complex microbial communities, an efficient, broad host-range delivery vehicle is needed. We engineered the broad host-range IncP1-plasmid pKJK5 to encode cas9 programmed to target an AMR gene. We demonstrate that the resulting plasmid pKJK5::csg has the ability to block the uptake of AMR plasmids and to remove resident plasmids from Escherichia coli. Furthermore, due to its broad host range, pKJK5::csg successfully blocked AMR plasmid uptake in a range of environmental, pig- and human-associated coliform isolates, as well as in isolates of two species of Pseudomonas. This study firmly establishes pKJK5::csg as a promising broad host-range CRISPR-Cas9 delivery tool for AMR plasmid removal, which has the potential to be applied in complex microbial communities to remove AMR genes from a broad range of bacterial species.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Humans , Animals , Swine , Host Specificity , Biological Transport , Escherichia coli/genetics , Plasmids/genetics
11.
Microbiol Res ; 270: 127319, 2023 May.
Article in English | MEDLINE | ID: mdl-36780784

ABSTRACT

Rapid emergence of drug resistance has posed new challenges to the treatment of mycobacterial infections. As the pace of development of new drugs is slow, alternate treatment approaches are required. Recently, CRISPR-Cas systems have emerged as potential antimicrobials. These sequence-specific nucleases introduce double strand cuts in the target DNA, which if left unrepaired, prove fatal to the host. For most bacteria, homologous recombination repair (HRR) is the only pathway for repair and survival. Mycobacteria is one of the few bacteria which possesses the non-homologous end joining (NHEJ) system in addition to HRR for double strand break repair. To assess the antimicrobial potential of CRISPR-system, Cas9-induced breaks were introduced in the genome of Mycobacterium smegmatis and the survival was studied. While the single strand breaks were efficiently repaired, the organism was unable to repair the double strand breaks efficiently. In a mixed population of antibiotic-resistant and sensitive mycobacterial cells, selectively targeting a factor that confers hygromycin resistance, turned the entire population sensitive to the drug. Further, we demonstrate that the sequence-specific targeting could also be used for curing plasmids from mycobacterium cells. Considering the growing interest in nucleic acid-based therapy to curtail infections and combat antimicrobial resistance, our data shows that CRISPR-systems hold promise for future use as an antimicrobial against drug-resistant mycobacterial infections.


Subject(s)
CRISPR-Cas Systems , Mycobacterium , DNA Breaks, Double-Stranded , DNA Repair , DNA End-Joining Repair
12.
Microorganisms ; 11(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36838232

ABSTRACT

Rhodococcus has been extensively studied for its excellent ability to degrade artificial chemicals and its capability to synthesize biosurfactants and antibiotics. In recent years, studies have attempted to use Rhodococcus as a gene expression host. Various genetic tools, such as plasmid vectors, transposon mutagenesis, and gene disruption methods have been developed for use in Rhodococcus; however, no effective method has been reported for performing large-size genome reduction. Therefore, the present study developed an effective plasmid-curing method using the levansucrase-encoding sacB gene and a simple two-step genome-reduction method using a modified Cre/loxP system. For the results, R. erythropolis JCM 2895 was used as the model; a mutant strain that cured all four plasmids and deleted seven chromosomal regions was successfully obtained in this study. The total DNA deletion size was >600 kb, which corresponds mostly to 10% of the genome size. Using this method, a genome-structure-stabilized and unfavorable gene/function-lacking host strain can be created in Rhodococcus. This genetic tool will help develop and improve Rhodococcus strains for various industrial and environmental applications.

13.
Appl Microbiol Biotechnol ; 107(5-6): 1801-1812, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36808278

ABSTRACT

Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its metabolic engineering is limited by lack of genetic tools. Here, we firstly employed the endogenous xylan-inducible promoter to control ClosTron system for gene disruption of R. papyrosolvens. The modified ClosTron can be easily transformed into R. papyrosolvens and specifically disrupt targeting genes. Furthermore, a counter selectable system based on uracil phosphoribosyl-transferase (Upp) was successfully established and introduced into the ClosTron system, which resulted in plasmid curing rapidly. Thus, the combination of xylan-inducible ClosTron and upp-based counter selectable system makes the gene disruption more efficient and convenient for successive gene disruption in R. papyrosolvens. KEY POINTS: • Limiting expression of LtrA enhanced the transformation of ClosTron plasmids in R. papyrosolvens. • DNA targeting specificity can be improved by precise management of the expression of LtrA. • Curing of ClosTron plasmids was achieved by introducing the upp-based counter selectable system.


Subject(s)
Clostridiales , Xylans , Clostridiales/genetics , Plasmids , Clostridium/genetics
14.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-36690344

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems have been widely applied for gene or genome editing. Adequate checking is important to screen mutants after CRISPR-mediated editing events. Here, we report gene escape cases after the knockout by Type I-F native CRISPR system in Zymomonas mobilis. Through amplifying both the gene of interest and its flanking homologous arms, followed by curing the editing plasmid, we found different destinies for gene-editing events. Some genes were readily knocked out and followed by the easy plasmid curing. In some other cases, however, the editing plasmid was difficult to remove from the cell, or the deleted genes were transferred into the editing plasmid. For example, the targeted region of fur can be integrated into the editing plasmid after the knockout, resulting in a spurious editing event. We supposed that the transfer of the gene may be attributed to bacterial insertion sequences. Searching for literatures on the gene knockout using CRISPR in bacteria reveals that the escape event is likely underestimated due to inadequate validation in other microbes. Hence, several strategies are proposed to enhance gene knockout and plasmid curing.


Subject(s)
Gene Editing , Zymomonas , Gene Editing/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Zymomonas/genetics , Plasmids , Gene Knockout Techniques
15.
Arch Microbiol ; 205(1): 41, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36571636

ABSTRACT

For the sustainable farming of disease-free and healthy shrimps, antimicrobial use is frequent nowadays in shrimp-cultured system. Considering the serious impact of global antimicrobial resistance (AMR), the present study was focused to investigate the prevalence of antimicrobial-resistant vibrios among infected shrimps (Penaeus vannamei) from two brackish water-cultured farms. Diverse species of vibrios viz. V. alginolyticus, V. parahaemolyticus, V. cholerae, V. mimicus, and V. fluvialis along with Aeromonas hydrophila, A. salmonicida and Shewanella algae were recovered from the shrimps on TCBS medium. Shannon-Wiener diversity index and H' (loge) were 1.506 and 1.69 for the isolates from farm 1 and farm 2, respectively. V. alginolyticus was found to be the most resistant isolate by showing multiple antibiotic resistance (MAR) index of 0.60 followed by V. mimicus (0.54) and V. parahaemolyticus (0.42). Among the 35 antibiotics of 15 different classes tested, tetracyclines, beta-lactams and cephalosporins were found as the most resistant antibiotic classes. All the isolates possessed a MAR index > 0.2 and the majority exhibited minimum inhibitory concentration (MIC) > 256 mcg/ml, thereby indicating the excess exposure of antibiotics in the systems. An enhanced altered resistance phenotype and a significant shift in the MAR index were noticed after plasmid curing. Public health is further concerning because plasmid-borne AMR is evident among the isolates and the studied shrimp samples are significant in the food industry. This baseline information will help the authorities to curb antimicrobial use and pave the way for establishing new alternative strategies by undertaking a multidimensional "One-Health" approach.


Subject(s)
Anti-Infective Agents , Penaeidae , Vibrio cholerae , Vibrio parahaemolyticus , Vibrio , Animals , Anti-Bacterial Agents/pharmacology
16.
ACS Synth Biol ; 11(12): 4031-4042, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36414383

ABSTRACT

Lactobacilli such as Lacticaseibacillus (Lcb) paracasei are generally regarded as safe and health-promoting microbes, and have been widely applied in food and pharmaceutical industries. However, the genetic bases of their beneficial properties were mostly uncertain because of the lack of effective genetic manipulation tools. The type II CRISPR-Cas9 system is the largest family present in lactobacilli, but none of them yet have been developed for genetic modifications. Here, we establish the first endogenous CRISPR-Cas9 genome-editing system in lactobacilli. With a validated protospacer adjacent motif (PAM) and customized single guide RNA (sgRNA) expression cassette, the native CRISPR-Cas9 system was reprogrammed to achieve gene deletion and chromosomal insertion at over 90% efficiency, as well as nucleotide substitution at ≥50% efficiency. We also effectively accomplished deletions of large genomic fragments (5-10 kb) and simultaneous deletion of multiple genes at distal loci, both of which are the first cases in lactobacilli when either endogenous or exogenous CRISPR-Cas systems were employed. In addition, we designed a controllable plasmid-targeting sgRNA expression module and integrated it into the editing plasmid. The all-in-one vector realized gene deletion and plasmid curing at high efficiency (>90%). Collectively, the present study develops a convenient and precise genetic tool in Lcb. paracasei and contributes to the genetics and engineering of lactobacilli.


Subject(s)
Gene Editing , Lacticaseibacillus paracasei , CRISPR-Cas Systems/genetics , Lacticaseibacillus , Plasmids/genetics , Lactobacillus/genetics
17.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563122

ABSTRACT

The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion system (T3SS) is highly prevalent in Pdp strains from different geographical origins and fish host species. We found that pPHDPT3 undergoes curing upon in vitro cultivation, and this instability constitutes a generalized feature of pPHDPT3-like plasmids in Pdp strains. pPHDPT3 markers were detected in tissues of naturally-infected moribund fish and in the Pdp colonies grown directly from the fish tissues but were undetectable in a fraction of the colonies produced upon the first passage of the primeval colonies on agar plates. Notably, cured strains exhibited a marked reduction in virulence for fish, demonstrating that pPHDPT3 is a major virulence factor of Pdp. The attempts to stabilize pPHDPT3 by insertion of antibiotic resistance markers by allelic exchange caused an even greater reduction in virulence. We hypothesize that the existence of a high pressure to shed pPHDPT3 plasmid in vitro caused the selection of clones with off-target mutations and gene rearrangements during the process of genetic modification. Collectively, these results show that pPHDPT3 constitutes a novel, hitherto unreported virulence factor of Pdp that shows a high instability in vitro and warn that the picture of Pdp virulence genes has been historically underestimated, since the loss of the T3SS and other plasmid-borne genes may have occurred systematically in laboratories for decades.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Animals , Fish Diseases/microbiology , Fishes/genetics , Gram-Negative Bacterial Infections/microbiology , Photobacterium/genetics , Plasmids/genetics , Type III Secretion Systems/genetics , Virulence/genetics , Virulence Factors/genetics
18.
J Biotechnol ; 345: 17-29, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34995560

ABSTRACT

Plasmid expression level heterogeneity in Cupriavidus necator was studied in response to stringent culture conditions, supposed to enhance plasmid instability, through plasmid curing strategies. Two plasmid curing strategies were compared based on their efficiency at generating heterogeneity in batch: rifampicin addition and temperature increase. A temperature increase from 30° to 37 °C was the most efficient plasmid curing strategy. To generate a heterogeneous population in terms of plasmid expression levels, successive batches at supra-optimal culture temperature (i.e. 37 °C) were initially conducted. Three distinct fluorescent subpopulations P0 (not fluorescent), P1 (low fluorescence intensity, median = 1 103) and P2 (high fluorescence intensity, median = 6 103) were obtained. From there, the chemostat culture was implemented to study the long-term stress response under well-controlled environment at defined dilution rates. For dilution rates comprised between 0.05 and 0.10 h-1, the subpopulation P2 (62% vs 90%) was favored compared to P1 cells (54% vs 1%), especially when growth rate increased. Our biosensor was efficient at discriminating subpopulation presenting different expression levels under stringent culture conditions. Plus, we showed that controlling growth kinetics had a stabilizing impact on plasmid expression levels, even under heterogeneous expression conditions.


Subject(s)
Biosensing Techniques , Cupriavidus necator , Cupriavidus necator/genetics , Kinetics , Plasmids/genetics
19.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: mdl-34747689

ABSTRACT

Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid's parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.


Subject(s)
Gene Editing , Streptomyces , Chromosomes , Gene Editing/methods , Plasmids/genetics , Streptomyces/genetics
20.
Int J Mol Sci ; 22(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34768910

ABSTRACT

A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa's to be incorporated.


Subject(s)
Amino Acids/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Codon/metabolism , Escherichia coli/metabolism , Lysine/analogs & derivatives , Plasmids/metabolism , RNA, Transfer/metabolism , Amino Acids/genetics , Amino Acyl-tRNA Synthetases/genetics , Codon/genetics , Escherichia coli/genetics , Lysine/chemistry , Lysine/genetics , Plasmids/genetics , Protein Biosynthesis , RNA, Transfer/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL