Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.061
Filter
1.
Sci Prog ; 107(4): 368504241288373, 2024.
Article in English | MEDLINE | ID: mdl-39360494

ABSTRACT

Objectives: Marine biodiversity and ecosystem services in the high seas are threatened by numerous stress factors caused by human activities, including global shipping, high-sea fishing, marine plastic pollution, and anthropogenic climate change. Socioeconomic factors are one of the criteria for the establishment of area-based management tools in the high seas for marine biodiversity conservation beyond national jurisdiction. The aim of the work is to propose a spatiotemporal approach to identify risks from marine human activities and recommendations for high seas governance. Methods: Data related to human activities from 2014 to 2022 were used to calculate the distribution and changes of human-related stressors, and the risk to marine biodiversity in the high seas caused by human activities. Results: The North Atlantic, Philippine Sea, Arabian Sea, Bay of Bengal, and East Central Atlantic show high and increasing intensities of human-related stressors, and are therefore particularly at need for the protection and conservation of marine biodiversity. Risks from human activities vary within the marine areas that are prioritized for biodiversity protection. The study recommends that the designation of high seas protected areas should take into account the types of risks to which the different marine areas are exposed, and that the high seas protected areas should be established gradually. At the same time, appropriate management measures should be formulated according to the intensity of human activities in the different marine areas. Conclusions: Quantifying and classifying the risk from human-related stressors could help identify solution for the protection and conservation and facilitate the marine spatial planning, establishment area based management tools, including marine protected areas in the high seas.


Subject(s)
Biodiversity , Conservation of Natural Resources , Oceans and Seas , Humans , Risk Assessment/methods , Human Activities , Ecosystem , Climate Change , Environmental Monitoring/methods , Fisheries
2.
Mar Pollut Bull ; 208: 117049, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357369

ABSTRACT

The Mediterranean Sea is one of the most heavily polluted regions. Here we comprehensively review the current state of microplastic pollution in the Mediterranean Sea and the Black Sea. A total of 284 studies published between 2012 and 2023 were analyzed, revealing a continuous increase in research efforts. Our review encompassed microplastic monitoring studies across five environmental matrices: the sea surface, water column, intertidal sediment, bottom sediment, and biota, with a predominant focus observed in biota-related studies with fish, molluscs, crustaceans, and echinoderms being the primary focus. The study found that species such as Mullus barbatus, Mytilus galloprovincialis, Nephrops norvegicus, and Holothuria tubulosa are frequently studied species. The review also emphasizes the lack of standardized methodologies across studies, which hampers the comparability of results and the synthesis of data. The findings of this study provide a critical evaluation of the current research landscape and identify significant knowledge gaps, particularly in the underrepresented southern Mediterranean and Black Sea regions, calling for more balanced research efforts and methodological consistency in future studies.

3.
Mar Pollut Bull ; 208: 117075, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39361995

ABSTRACT

Alternatives to address the ocean plastic crisis have been a hot topic in scientific literature, although a systemic approach to assess their effectiveness and identify bottlenecks is still lacking. To contribute to discussions on this topic, this study aims to conduct a literature review on current scientific information regarding management strategies for marine plastic pollution. The PRISMA method was used to select the most relevant articles from the Scopus® database, resulting in a sample of 176 articles after applying exclusion criteria for full-text evaluation. Unlike other literature review studies, Odum's Macroscope is used here to develop a model that provides a systemic view of the plastic crisis on a large scale, encompassing various compartments and their interactions. Specifically, eight compartments are identified: industry, consumers, waste collection & management, freshwater systems, fisheries, aquaculture and shipping, marine ecosystems, marine plastic collection and recycling, and life cycle. Each piece of literature reviewed is categorized into one of these compartments and discussed accordingly. The highlights of the results indicate that: (i) waste collection & management and freshwater systems, which are primary pathways for plastic litter reaching the ocean, have been relatively under-investigated compared to other compartments. (ii) Most studies originate from developed countries, raising doubts about the effectiveness of management proposals in underdeveloped countries. (ii) Existing strategies for collecting and recycling marine litter are unlikely to be implemented at a large scale due to operational obstacles, thus offering insufficient mitigation for the plastic crisis. (iv) The development of new biomaterials has proven mostly ineffective and harmful. (v) Alternatives management for microplastic pollution are still in their infancy, resulting in scarce information across all compartments. (vi) No studies focus on the origin of the plastic issue, which lies in the petrochemical industry. From a general perspective, the literature indicates that there is no one-size-fits-all management strategy to the plastic crisis, and the available options are often scattered and disconnected, making a systemic approach essential for studying such a transboundary issue. While efforts exist, stakeholders must act to effectively address the problem, or at least make meaningful progress. The marine plastic crisis operates systemically, analogous to the climate crisis, both stemming from human dependence on fossil fuels. Similar to achieving carbon neutrality, designing a globally sustainable economy should prioritize achieving plastic neutrality as a core component.

4.
Environ Pollut ; 363(Pt 1): 125076, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374761

ABSTRACT

Plastic pollution, a global threat to environmental and human health, is now ubiquitous in the environment, including agricultural soils receiving urban compost amendments. Yet, the accumulation pattern of microplastics in soils are still to be disentangled, with regards to their sources and/or their physical properties such as morphotypes. The aim of this study was to identify the accumulation patterns of coarse microplastics (CMP) resulting from the long-term amendment of soil with urban waste composts. To this end, we used a field experiment receiving three different urban composts derived from municipal solid waste, biowaste, and a mixture of sewage sludge and green waste. We isolated 1417 coarse microplastic particles from a 21-year archive of soil and compost samples, using density fractionation followed by oxidation, and used Py-GC/MS for polymer identification. Different compost types led to different coarse microplastics accumulation levels. The accumulation pattern showed increasing CMP contents in soils over time. After 21 years of experiment, the calculated number of CMP was in accordance with the estimated values for all three compost types but it was not the case for the CMP mass. No difference of evolution pattern was found between films and fragments. We proposed that biotic transport or abiotic weathering and fragmentation could explain such differences in CMP evolution pattern.

5.
Sci Total Environ ; : 176707, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39378951

ABSTRACT

Wetlands provide numerous ecosystem services including freshwater purification. Nonetheless, their functionality is continuously impacted by many pollutants. Plastics are considered as an emerging threat for these ecosystems, but only recently have studies began to focus on plastic and microplastic (MP) contamination in wetlands, especially in biota. This study aims to investigate the abundance of MPs in two ubiquitous aquatic insect taxa (i.e. Corixidae (Hemiptera) and Chironomidae (Diptera)) collected in twelve zones within Mediterranean wetlands belonging to three basins located in Andalusia (south-west Spain). We compared MP contamination across basins and tested the proximity to landfills and presence of colonial waterbirds [i.e. white storks (Ciconia ciconia) and gulls (Larus michahellis and L. fuscus)] on MP abundance in aquatic insects. We also performed stable isotope analyses of nitrogen and carbon (δ15N and δ13C) to evaluate the potential association between MP abundance and isotopic values. We detected 571 suspected MPs (mostly blue fibers) in insects of different developmental stages (i.e., larvae, pupae, nymphs and adults). Polyesters and polypropylene were the most frequent polymers detected. The generalized linear mixed models indicated that MP abundance decreased with increasing distance from landfills; but it also increased in sites with birds that fed on landfills and roost in wetlands. When controlling for landfill effects, sites in the smallest basin (Guadalete) had lower MP contamination than those in Odiel-Tinto and the much larger (>15×) Guadalquivir. Moreover, we found a negative association between MPs items/g (or mean MPs) and 15N isotopes in adult corixids. Our findings showed that MP pollution is present in all the study areas, including strictly protected wetlands. The use of aquatic insects for biomonitoring of MP pollution can help identify priority areas for management actions to mitigate plastic pollution.

6.
Article in English | MEDLINE | ID: mdl-39367216

ABSTRACT

Until recently, plastic pollution research was focused on the marine environments, and attention was given to terrestrial and freshwater environments latter. This discussion paper aims to put forward crucial questions on issues that limit our ability to conduct reliable plastic ecological risk assessments in rivers. Previous studies highlighted the widespread presence of plastics in rivers, but the sources and levels of exposure remained matters of debate. Field measurements have been carried out on the concentration and composition of plastics in rivers, but greater homogeneity in the choice of plastic sizes, particularly for microplastics by following the recent ISO international standard nomenclature, is needed for better comparison between studies. The development of additional relevant sampling strategies that are suited to the specific characteristics of riverine environments is also needed. Similarly, we encourage the systematic real-time monitoring of environmental conditions (e.g., topology of the sampling section of the river, hydrology, volumetric flux and velocity, suspended matters concentration) to better understand the origin of variability in plastic concentrations in rivers. Furthermore, ingestion of microplastics by freshwater organisms has been demonstrated under laboratory conditions, but the long-term effects of continuous microplastic exposure in organisms are less well understood. This discussion paper encourages an integrative view of the issues involved in assessing plastic exposure and its effects on biota, in order to improve our ability to carry out relevant ecological risk assessments in river environments.

7.
Sci Total Environ ; 954: 176619, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362533

ABSTRACT

Microplastics are small plastic particles with sizes ranging between 1 µm and 5 mm. Microplastics can originate from macro plastics and degrade to a smaller size or be produced directly by manufacturers. Few studies have examined microplastic contamination in freshwater sediment cores to estimate changes in microplastic contamination over time. We present the results of a study that examined sediment cores from four watersheds, Kiskiminetas River, Blacklick Creek, Raystown Lake, and Darby Creek, in Pennsylvania, USA to reveal the history of microplastic accumulation and factors that contribute to microplastic distribution. The abundance and morphology of microplastics varied over time and between these four locations. The highest microplastic abundance was found in Raystown Lake, ranging from 704 to 5397 particles kg-1 with fiber as the dominant microplastic type, while Darby Creek (0-3000 particles kg-1), Kiskiminetas River (0-448 particles kg-1), and Blacklick Creek (0-156 particles kg-1) had lower microplastic concentration. Moreover, Darby Creek had the most diverse microplastic morphology and a trend of decreasing concentration with depth. Although the Darby Creek watershed has the most developed area and highest population density, it did not have the highest microplastic concentration. Averaged over the four cores, microplastic abundance increased as global plastics production increased from the 1950s-2010s. Our findings provide insights into the fate and transport of microplastic contamination in freshwater environments, which is vital to establishing sustainable mitigation strategies.

8.
Mar Environ Res ; 202: 106769, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39369653

ABSTRACT

The coasts of the world's oceans and seas accumulate various types of floating debris, commonly known as beach wracks, including organic seaweeds, seagrass, and ubiquitous anthropogenic waste, mainly plastic. Beach wrack microbiome (MB), surviving in the form of a biofilm, ensures decomposition and remineralization of wracks, but can also serve as a vector of potential pathogens in the environment. Through the interdisciplinary approach and comprehensive sampling design that includes geological analysis of the sediment, plastic debris composition analysis (ATR-FTIR) and application of 16S rRNA gene metabarcoding of beach wrack MBs, this study aims to describe MB in relation to beach exposure, sediment type and plastic pollution. Major contributors in beach wrack MB were Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Verrucomicrobia and Firmicutes and there was significant dissimilarity between sample groups with Vibrio, Cobetia and Planococcus shaping the Exposed beach sample group and Cyclobacteriaceae and Flavobacterium shaping the Sheltered beach sample group. Our results suggest plastisphere MB is mostly shaped by beach exposure, type of seagrass, sediment type and probably beach naturalness with heavy influence of seawater MB and shows no significant dissimilarity between MBs from a variety of microplastics (MP). Putative functional analysis of MB detected plastic degradation and potential human pathogen bacteria in both beach wrack and seawater MB. The research provides the next crucial step in beach wrack MP accumulation research, MB composition and functional investigation with focus on beach exposure as an important variable.

9.
Mar Pollut Bull ; 208: 117026, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368150

ABSTRACT

Plastic pollution is an increasing problem in the marine environment, and microplastics are frequently ingested by wildlife, including seabirds. Faeces are an increasingly used matrix to quantify egested microplastics. We investigated microplastics in 36 faeces samples from chicks of European shags (Gulosus aristotelis) sampled at Sklinna, central Norway in 2021. Small particles <300 µm (62 %) dominated the material. Out of 465 particles measured with Raman spectroscopy, 32 were identified as microplastics (21 fragments, 4 fibres). 69.4 % of faecal samples contained microplastics, with on average 17 microplastic particles per g faeces dry weight. Sixteen of the 36 samples originated from siblings sampled within the same hour, and plastic loads of these samples were more similar to each other compared to those from other individuals. This suggests that a sample from one chick is representative for all siblings at a given moment in time and proofs parental transfer of MP.

10.
Water (Basel) ; 16(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-39219624

ABSTRACT

A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.

11.
Water Environ Res ; 96(9): e11123, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223713

ABSTRACT

Microplastics (MPs) severely threaten inland waterbodies due to the direct impact of human activities. In the present study, spatial and temporal patterns of MPs in a shallow tropical lake were assessed, describing their size, morphology, and polymer types. Water and sediment samples were collected from Lake Chapala during three seasons, and MPs were quantified with a stereomicroscope. The structure, elemental composition, and polymeric composition were determined via environmental scanning electron microscopy and Fourier transform infrared spectroscopy. The highest average concentration of microplastics in Lake Chapala was detected during the low-water period in April 2022 (2.35 items/L), exceeding the July 2022 rainy season concentration (1.8 items/L) by 0.25 items/L, and sediment concentrations were also higher in April 2022 (219 items/kg) compared to July 2022 (210 items/kg). This study highlights the significant pollution of Lake Chapala with microplastics, emphasizing the need for urgent measures to manage plastic waste and mitigate its environmental impact on aquatic ecosystems. PRACTITIONER POINTS: Microplastic contamination was evaluated in Lake Chapala. The distribution profiles of microplastics were different in each area. Heavy metals osmium, tellurium, and rhodium were found associated with the PMs. Polymers were found in this study.


Subject(s)
Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Lakes/chemistry , Geologic Sediments/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Tropical Climate , Plastics/chemistry
12.
Heliyon ; 10(16): e36360, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253117

ABSTRACT

This systematic review investigates the interactions of microplastics (MPs) and nanoplastics (NPs) with bryophytes, incorporating findings from 11 articles identified through a comprehensive database search using a combination of keywords. The review explores mechanisms such as adsorption and internalization by which MPs and NPs are present in bryophytes and examines the ecological ramifications, including changes in bryophyte community structure and impacts on ecosystem functions such as nutrient cycling, soil formation, habitat provision, water balance, and erosion control. Despite providing valuable insights, this review highlights several critical knowledge gaps that warrant further investigation. Future research should address the following areas: the long-term effects of MPs and NPs on bryophyte health and survival, the mechanisms of MP and NP uptake and translocation within bryophytes, and the broader ecological consequences of plastic pollution on bryophyte-dominated ecosystems. Additionally, studies should explore the effectiveness of various mitigation and management strategies, including advanced waste management techniques and innovative technologies, in reducing plastic pollution and protecting these vital ecosystems.

13.
Heliyon ; 10(16): e35982, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253254

ABSTRACT

Bisphenol A (BPA) is a growing concern as an endocrine-disrupting chemical due to its adverse health effects. However, the association between BPA and sperm quality in adult human males remains unclear. The aim of this study was to assess the daily life exposure level of BPA and analyze its correlation with sperm quality in males. Patients who sought treatment in Chinese infertility clinics between May and October 2023 were selected as study subjects. We determined participants' serum BPA content using high-performance liquid chromatography. Sperm count and motility were assessed using a computer-aided sperm analysis system, while sperm morphology was analyzed using an improved Papanicolaou stain. A total of 405 participants, averaging 33.01 ± 5.44 years old, were included. We observed low semen quality among participants in infertility clinics. Principal component analysis was performed for each semen quality index, and three principal components reflecting sperm motility, count, and morphology were extracted. The participants' mean serum BPA level was 6.96 ng/mL. Negative correlations were observed between serum BPA content and total sperm count, sperm density, forward motility rate, and non-forward motility rate. A positive correlation was found between the non-motile sperm rate and the head deformity rate. Morphological abnormalities were the predominant adverse effects observed. Despite low daily life BPA exposure, long-term low-dose exposure in the general population may damage semen quality. This study provides a scientific basis for managing health risks associated with BPA exposure.

14.
Mar Pollut Bull ; 208: 116935, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278179

ABSTRACT

Numerous studies have investigated the occurrence of plastic additives in marine biota. Yet, their main vector of transfer into organisms tissues remains unknown. We explored seven common additives in benthic coral reef invertebrates residing on natural/plastic substrates in a protected marine reserve versus an unprotected reef to ascertain whether additives transfer by substrate leaching. Samples of three coral-reef species were extracted and analyzed by GCMS and HPLC. Of the seven chemical additives investigated, dibenzylamine and bis(2-ethylhexyl) phthalate were detected. No significant association was found between additives and substrate type, possibly because these plastics have been submerged for years, and the majority of additives within them have leached. The marine reserve had fewer samples with additives, highlighting the importance of active management. Understanding the transfer vectors of plastic additives into biota is essential for assessing the risk they pose and devising effective management tools for protecting coral reefs.

15.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274023

ABSTRACT

The escalating environmental impact of plastic packaging waste necessitates sustainable alternatives in food packaging. This study explores starch-based films derived from cassava and potato as viable substitutes, aiming to mitigate plastic pollution and enhance environmental sustainability. Utilizing a casting method, formulations optimized by CCRD were characterized for their physical, physicochemical, and morphological properties. Comprehensive analysis revealed both cassava and potato starch films to exhibit robust structural integrity, high tensile strength (up to 32.6 MPa for cassava starch films), and semi-crystalline morphology. These films demonstrated low water vapor permeability and moderate solubility, akin to conventional low-density polyethylene used in packaging. Differential scanning calorimetry indicated glass transition temperatures between 116.36 °C and 119.35 °C, affirming thermal stability suitable for packaging applications. Scanning electron microscopy confirmed homogeneous film surfaces, with cassava starch films (C4-15) exhibiting superior transparency and uniformity. X-ray diffraction corroborated the films' semi-crystalline nature, unaffected by sorbitol content variations. Despite their mechanical and thermal suitability, further enhancements in thermal degradation resistance are essential for broader thermoprocessing applicability. These findings underscore the potential of starch-based films to be used as lids or other part of a food package, decreasing the plastic dependency in food packaging, contributing decisively to waste reduction and environmental preservation.

16.
Materials (Basel) ; 17(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274561

ABSTRACT

The increasing concern over environmental sustainability has prompted various industries to reassess their practices and explore greener alternatives. Dentistry, as a significant contributor to waste generation, is actively seeking methods to minimize its environmental footprint. This paper examines the environmental implications of clear aligner therapy (CAT) in orthodontics and explores strategies to prioritize sustainability in aligner manufacturing and usage. CAT has gained popularity as a viable alternative to traditional fixed appliances due to advancements in biomaterials and computer-aided design (CAD) and manufacturing (CAM) technologies. The global market for clear aligners is expanding rapidly, with significant growth projected in the coming years. To address these challenges, this paper proposes adopting the principles of reduce, reuse, recycle, and rethink (4Rs) in orthodontic practices. Strategies such as minimizing resource consumption, incorporating recycled materials, and promoting proper aligner disposal and recycling can significantly reduce environmental harm. This paper explores emerging technologies and materials to mitigate the environmental impacts of CAT. Additionally, initiatives promoting aligner recycling and repurposing offer promising avenues for reducing plastic waste and fostering a circular economy. In conclusion, while CAT offers numerous benefits in orthodontic treatment, its environmental impact cannot be overlooked. By implementing sustainable practices and embracing innovative solutions, the orthodontic community can contribute to a more environmentally conscious future while continuing to provide quality care to patients.

17.
Mar Pollut Bull ; 208: 116936, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39293367

ABSTRACT

Microplastic contamination (MP) has created havoc in all eco-systems especially the estuarine environment. The current investigation focused on assessing MP contamination along the Mahi River Estuary in Gujarat. Thirty sampling sites were selected along the estuary, spanning from Khambhat to Kamboi. Sediment samples were collected, processed, and analyzed for MPs. A total of 1371 MP particles were found, with an average abundance of 0.76 ± 0.25 MPs/g dry weight. The MP abundance was recorded at its highest and lowest at Chokari and Umraya, respectively. The MP abundance varied significantly between study sites. Fibers were reported dominantly, followed by fragments, films, and foam. Size-wise, 1-2 mm and <1 mm-sized MPs were prevalent. Various colours of MPs were also recorded. Polyethylene tetraphene, polyethylene, and polypropylene are the most abundant. Tourism, fishing activities, and a lack of waste management practices can be the possible reasons for MPs input in to estuarine habitats.

18.
Mar Pollut Bull ; 208: 116961, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39293370

ABSTRACT

Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.

19.
Sci Total Environ ; 952: 175938, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39218118

ABSTRACT

Seabirds have become biovectors of plastic pollutants between marine and terrestrial ecosystems, and transport of plastics to their nesting sites becomes relevant due to increasing levels of pollution. To determine the pathways by which plastic reaches their colonies, we analysed the abundance of plastics at the nesting sites of five seabird species (Humboldt penguin Spheniscus humboldti, Peruvian booby Sula variegata, kelp gull Larus dominicanus, grey gull Leucophaeus modestus, Markham's storm-petrel Hydrobates markhami) nesting in northern Chile. Seabirds were primarily grouped according to their nesting behaviour, but two species foraging in contrasting habitats (kelp gull and Markham's storm-petrel) were also compared directly. The abundance, type, and polymer of macro-, meso- and microplastics were analysed in the soil of colonies and control sites, and microplastic ingestion was evaluated for selected species. Densities of plastics in colonies of surface-nesting seabirds ranged from 0 to 21.4 items m-2 (mainly plastic bags and thin films), and 0.002 to 19.7 items m-2 (mainly hard fragments) in colonies of burrow-nesting seabirds. Mean microplastic loads in the stomachs of seabirds were between 3.7 ± 4.2 plastic items individual-1. Overall, the abundances of plastic items in all seabird colonies were low, suggesting a limited transfer of plastics from sea to land. For kelp gulls, the results indicate transfer of macroplastic items to colonies, reaching the colony via regurgitates, with landfills considered as the main plastic source. Our results suggest that contrasting nesting behaviour and foraging habitats among species can explain differential plastic accumulation in seabird colonies, but also other factors, such as wind, contribute to the accumulation of plastic debris in colonies. Proper management of sanitary landfills are key to reduce plastic contamination of coastal seabirds and their colonies.


Subject(s)
Birds , Ecosystem , Environmental Monitoring , Plastics , Animals , Plastics/analysis , Chile , Charadriiformes/physiology , Waste Products/analysis , Water Pollutants, Chemical/analysis , Microplastics/analysis
20.
Sci Total Environ ; 954: 176185, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265680

ABSTRACT

In French Polynesia, pearl farming represents the second economic resource of the country. The distinctive black pearls produced there are globally recognized and appreciated. However, pearl farms extensively use submerged plastic materials. Through gas chromatography coupled with tandem mass spectrometry detection (GC/MSMS) analysis, we were able to identify various POPs (Persistent Organic Pollutants) and additives released after 24 h of leaching into seawater from these "pearl plastics" composed of PE (Polyethylene) and PP (Polypropylene). Subsequently, we tested different concentrations of this plastic leachate on five tropical species commonly raised in the pearl and aquaculture sector in Polynesia: Pinctada margaritifera, Saccostrea cucullata, Holothuria whitmaei, Litopenaeus stylirostris, and Tripneustes gratilla. Monitoring the embryo-larval development of these organisms allowed us to establish a correlation between the decrease in the percentage of normal larvae and the plastic concentration. Through the use of regression models, the EC50 (Effective Concentration) of the plastic leachate for each species was determined, and demonstrated to range from 6.6 to 71.5 g/L, depending on the species. The most sensitive species was the black teatfish Holothuria whitmaei, a tropical sea cucumber used for the first time for ecotoxicological tests. The sensitivity of this species, its large distribution in tropical areas, and the various advantages presented by its cultivation make it an interesting bio-indicator species for monitoring plastic pollution in tropical lagoons.

SELECTION OF CITATIONS
SEARCH DETAIL