Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39275567

ABSTRACT

The platooning of cars and trucks is a pertinent approach for autonomous driving due to the effective utilization of roadways. The decreased gas consumption levels are an added merit owing to sustainability. Conventional platooning depended on Dedicated Short-Range Communication (DSRC)-based vehicle-to-vehicle communications. The computations were executed by the platoon members with their constrained capabilities. The advent of 5G has favored Intelligent Transportation Systems (ITS) to adopt Multi-access Edge Computing (MEC) in platooning paradigms by offloading the computational tasks to the edge server. In this research, vital parameters in vehicular platooning systems, viz. latency-sensitive radio resource management schemes, and Age of Information (AoI) are investigated. In addition, the delivery rates of Cooperative Awareness Messages (CAM) that ensure expeditious reception of safety-critical messages at the roadside units (RSU) are also examined. However, for latency-sensitive applications like vehicular networks, it is essential to address multiple and correlated objectives. To solve such objectives effectively and simultaneously, the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework necessitates a better and more sophisticated model to enhance its ability. In this paper, a novel Cascaded MADDPG framework, CMADDPG, is proposed to train cascaded target critics, which aims at achieving expected rewards through the collaborative conduct of agents. The estimation bias phenomenon, which hinders a system's overall performance, is vividly circumvented in this cascaded algorithm. Eventually, experimental analysis also demonstrates the potential of the proposed algorithm by evaluating the convergence factor, which stabilizes quickly with minimum distortions, and reliable CAM message dissemination with 99% probability. The average AoI quantity is maintained within the 5-10 ms range, guaranteeing better QoS. This technique has proven its robustness in decentralized resource allocation against channel uncertainties caused by higher mobility in the environment. Most importantly, the performance of the proposed algorithm remains unaffected by increasing platoon size and leading channel uncertainties.

2.
Sensors (Basel) ; 24(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257430

ABSTRACT

Reconfigurable intelligent surfaces (RIS) are expected to bring about a revolutionary transformation in vehicular networks, thus paving the way for a future characterized by connected and automated vehicles (CAV). An RIS is a planar structure comprising many passive elements that can dynamically manipulate electromagnetic waves to enhance wireless communication by reflecting, refracting, and focusing signals in a programmable manner. RIS exhibits substantial potential for improving vehicle-to-everything (V2X) communication through various means, including coverage enhancement, interference mitigation, improving signal strength, and providing additional layers of privacy and security. This article presents a comprehensive survey that explores the emerging opportunities arising from the integration of RIS into vehicular networks. To examine the convergence of RIS and V2X communications, the survey adopted a holistic approach, thus highlighting the potential benefits and challenges of this combination. In this study, we examined several applications of RIS-aided V2X communication. Subsequently, we delve into the fundamental emerging technologies that are expected to empower vehicular networks, encompassing mobile edge computing (MEC), non-orthogonal multiple access (NOMA), millimeter-wave communication (mmWave), Artificial Intelligence (AI), and visible light communication (VLC). Finally, to stimulate further research in this domain, we emphasize noteworthy research challenges and potential avenues for future exploration.

3.
Accid Anal Prev ; 195: 107405, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064941

ABSTRACT

The platooning technology allows for two or more trucks running in convoy at a pre-defined distance between each other, being virtually connected using connectivity technology and automated driving support systems. It is recognized that truck platooning systems bring economical and environmental advantages. Thus, it is time for a transition from the existing truck freight activity towards truck platooning systems. This requires an important improvement in terms of in-vehicle technology, together with infrastructure improvement and truck drivers' acquisition of new technology-related skills. A holistic approach is previewed to identify both the requirements for the development of truck platooning services and the requests for their safe deployment in the real world. Then, qualitative data were collected from truck drivers working for two different Portuguese freight companies using Focus Groups (FG). Thus, three FG sessions were organized and carried out with a total of 22 truck drivers. Considering that age and experience on the job are important factors to take into consideration for technological changes on the job, their potential impact on truck drivers' activity was addressed on the focus group discussions. Anyway, the potential users' attitudes regarding any innovation on the job were addressed as a prevention of further negative attitudes or misuse. Having safety in mind as a permanent attitude toward on job innovation is actually the most important factor toward success.


Subject(s)
Automobile Driving , Humans , Accidents, Traffic/prevention & control , Truck Drivers , Motor Vehicles , Data Collection
4.
Accid Anal Prev ; 193: 107225, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742439

ABSTRACT

A driving-safety-zone-model-oriented motion planning framework (DSZMF) is proposed for autonomous platoons in heterogeneous driving environments with complex driving behaviors and interactions between human-driven and autonomous vehicles. As an extension of the responsibility-sensitive-safety (RSS) model, the driving safety zone model ensures that autonomous truck platoons adhere to explicit and implicit traffic rules as rational traffic participants. It consists of three zones created by safe distances and artificial potential field (APF), namely the restricted zone, the coordinated zone, and pre-cautionary zone. The Rational Traffic Participant (RTP) module is created by using a Finite State Machine (FSM) to provide an optimized platooning behavioral strategy based on the dynamic states of surrounding vehicles. Furthermore, the distributed model predictive controllers are utilized for motion planning, while the H infinity controller is developed to maintain the string stability of the autonomous platoon. The proposed DSZMF generates behavioral decisions by thoroughly considering the driving safety zone model, string stability, and multiple vehicle dynamics constraints. Finally, three critical scenarios are co-simulated for case studies, and the simulation results demonstrate that the DSZMF improves the safe time integration rate over the existing MCF by 18.9%, 11.1%, and 11.6% in three scenarios, respectively. In addition, DSZMF increases the minimum longitudinal and lateral Time to Collision (TTC) values to reduce collision risks. The case studies validate the efficacy of the proposed method for safety assurance and collaborative control of the autonomous platoon.

5.
Sensors (Basel) ; 23(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37447746

ABSTRACT

This paper presents an exploration into the capabilities of an adaptive PID controller within the realm of truck platooning operations, situating the inquiry within the context of Cognitive Radio and AI-enhanced 5G and Beyond 5G (B5G) networks. We developed a Deep Learning (DL) model that emulates an adaptive PID controller, taking into account the implications of factors such as communication latency, packet loss, and communication range, alongside considerations of reliability, robustness, and security. Furthermore, we harnessed a Large Language Model (LLM), GPT-3.5-turbo, to deliver instantaneous performance updates to the PID system, thereby elucidating its potential for incorporation into AI-enabled radio and networks. This research unveils crucial insights for augmenting the performance and safety parameters of vehicle platooning systems within B5G networks, concurrently underlining the prospective applications of LLMs within such technologically advanced communication environments.


Subject(s)
Communication , Language , Reproducibility of Results , Motor Vehicles , Problem Solving
6.
Sensors (Basel) ; 23(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37430814

ABSTRACT

Developing radio access technologies that enable reliable and low-latency vehicular communications have become of the utmost importance with the rise of interest in autonomous vehicles. The Third Generation Partnership Project (3GPP) has developed Vehicle to Everything (V2X) specifications based on the 5G New Radio Air Interface (NR-V2X) to support connected and automated driving use cases, with strict requirements to fulfill the constantly evolving vehicular applications, communication, and service demands of connected vehicles, such as ultra-low latency and ultra-high reliability. This paper presents an analytical model for evaluating the performance of NR-V2X communications, with particular reference to the sensing-based semi-persistent scheduling operation defined in the NR-V2X Mode 2, in comparison with legacy sidelink V2X over LTE, specified as LTE-V2X Mode 4. We consider a vehicle platooning scenario and evaluate the impact of multiple access interference on the packet success probability, by varying the available resources, the number of interfering vehicles, and their relative positions. The average packet success probability is determined analytically for LTE-V2X and NR-V2X, taking into account the different physical layer specifications, and the Moment Matching Approximation (MMA) is used to approximate the statistics of the signal-to-interference-plus-noise ratio (SINR) under the assumption of a Nakagami-lognormal composite channel model. The analytical approximation is validated against extensive Matlab simulations that a show good accuracy. The results confirm a boost in performance with NR-V2X against LTE-V2X, particularly for high inter-vehicle distance and a large number of vehicles, providing a concise yet accurate modeling rationale for planning and adaptation of the configuration and parameter setup of vehicle platoons, without having to resort to extensive computer simulation or experimental measurements.

7.
Sensors (Basel) ; 23(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36772549

ABSTRACT

Intersections are at the core of congestion in urban areas. After the end of the Second World War, the problem of intersection management has benefited from a growing body of advances to address the optimization of the traffic lights' phase splits, timing, and offset. These contributions have significantly improved traffic safety and efficiency in urban areas. However, with the growth of transportation demand and motorization, traffic lights show their limits. At the end of the 1990s, the perspective of autonomous and connected driving systems motivated researchers to introduce a paradigm shift for controlling intersections. This new paradigm is well known today as autonomous intersection management (AIM). It harnesses the self-organization ability of future vehicles to provide more accurate control approaches that use the smallest available time window to reach unprecedented traffic performances. This is achieved by optimizing two main points of the interaction of connected and autonomous vehicles at intersections: the motion control of vehicles and the schedule of their accesses. Considering the great potential of AIM and the complexity of the problem, the proposed approaches are very different, starting from various assumptions. With the increasing popularity of AIM, this paper provides readers with a comprehensive vision of noticeable advances toward enhancing traffic efficiency. It shows that it is possible to tailor vehicles' speed and schedule according to the traffic demand by using distributed particle swarm optimization. Moreover, it brings the most relevant contributions in the light of traffic engineering, where flow-speed diagrams are used to measure the impact of the proposed optimizations. Finally, this paper presents the current challenging issues to be addressed.

8.
Hum Factors ; 65(2): 288-305, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33908795

ABSTRACT

OBJECTIVE: This study investigates the impact of silent and alerted failures on driver performance across two levels of scenario criticality during automated vehicle transitions of control. BACKGROUND: Recent analyses of automated vehicle crashes show that many crashes occur after a transition of control or a silent automation failure. A substantial amount of research has been dedicated to investigating the impact of various factors on drivers' responses, but silent failures and their interactions with scenario criticality are understudied. METHOD: A driving simulator study was conducted comparing scenario criticality, alert presence, and two driving scenarios. Bayesian regression models and Fisher's exact tests were used to investigate the impact of alert and scenario criticality on takeover performance. RESULTS: The results show that silent failures increase takeover times and the intensity of posttakeover maximum accelerations and decrease the posttakeover minimum time-to-collision. While the predicted average impact of silent failures on takeover time was practically low, the effects on minimum time-to-collision and maximum accelerations were safety-significant. The analysis of posttakeover control interaction effects shows that the effect of alert presence differs by the scenario criticality. CONCLUSION: Although the impact of the absence of an alert on takeover performance was less than that of scenario criticality, silent failures seem to play a substantial role-by leading to an unsafe maneuver-in critical automated vehicle takeovers. APPLICATION: Understanding the implications of silent failure on driver's takeover performance can benefit the assessment of automated vehicles' safety and provide guidance for fail-safe system designs.


Subject(s)
Automobile Driving , Autonomous Vehicles , Humans , Bayes Theorem , Regression Analysis , Automation , Accidents, Traffic , Reaction Time/physiology
9.
Sensors (Basel) ; 22(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36433235

ABSTRACT

Currently, research on automated vehicles is strongly related to technological advances to achieve a safe, more comfortable driving process in different circumstances. The main achievements are focused mainly on highway and interurban scenarios. The urban environment remains a complex scenario due to the number of decisions to be made in a restrictive context. In this context, one of the main challenges is the automation of the relocation process of car-sharing in urban areas, where the management of the platooning and automatic parking and de-parking maneuvers needs a solution from the decision point of view. In this work, a novel behavioral planner framework based on a Finite State Machine (FSM) is proposed for car-sharing applications in urban environments. The approach considers four basic maneuvers: platoon following, parking, de-parking, and platoon joining. In addition, a basic V2V communication protocol is proposed to manage the platoon. Maneuver execution is achieved by implementing both classical (i.e., PID) and Model-based Predictive Control (i.e., MPC) for the longitudinal and lateral control problems. The proposed behavioral planner was implemented in an urban scenario with several vehicles using the Carla Simulator, demonstrating that the proposed planner can be helpful to solve the car-sharing fleet relocation problem in cities.


Subject(s)
Automobile Driving , Automobiles , Autonomous Vehicles , Automation/methods , Cities
10.
Sensors (Basel) ; 22(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36298052

ABSTRACT

Automated truck platooning (ATP) has gained growing attention due to its advantage in reducing fuel consumption and carbon emissions. However, it poses serious challenges to highway bridges due to the load effect of multiple closely spaced heavy-duty trucks on the bridge. In China, ATP also has great application prospects in the massive and ever-increasing highway freight market. Therefore, the load effects of ATP on bridges need to be thoroughly investigated. In this study, typical Chinese highway bridges and trucks were adopted. ATP load models were designed according to the current Chinese road traffic regulations. The load effects of ATP on highway bridges were calculated using the influence line method and evaluated based on the Chinese bridge design specifications. Results show that the load effect of ATP on bridges increases with the increase in the gross vehicle mass and the truck platooning size but decreases with the increasing inter-truck spacing and the critical wheelbase. The Grade-I (best quality standard) highway bridges are generally capable of withstanding the ATP loads, while caution should be exercised for other bridges. Strategies for preventing serious adverse impacts of ATP load on highway bridges are proposed.


Subject(s)
Carbon , Motor Vehicles , Adenosine Triphosphate , China
11.
Sensors (Basel) ; 22(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35746267

ABSTRACT

Cooperative intelligent transportation systems (C-ITSs) such as platooning rely on a robust and timely network that may not always be available in sufficient quality. Out of the box hybrid networks only partly eliminate shortcomings: mutual interference avoidance, data load balancing, and data dissemination must be sophisticated. Lacking network quality may lead to safety bottlenecks that require that the distance between the following vehicles be increased. However, increasing gaps result in efficiency loss and additionally compromise safety as the platoon is split into smaller parts by traffic: maneuvers, e.g., cut-in maneuvers bear safety risks, and consequently lower efficiency even further. However, platoons, especially if they are very long, can negatively affect the flow of traffic. This mainly applies on entry or exit lanes, on narrow lanes, or in intersection areas: automated and non-automated vehicles in traffic do affect each other and are interdependent. To account for varying network quality and enable the coexistence of non-automated and platooned traffic, we present in this paper a new concept of platooning that unites ad hoc-in form of IEEE 802.11p-and cellular communication: feudalistic platooning. Platooned vehicles are divided into smaller groups, inseparable by surrounding traffic, and are assigned roles that determine the communication flow between vehicles, other groups and platoons, and infrastructure. Critical vehicle data are redundantly sent while the ad hoc network is only used for this purpose. The remaining data are sent-relying on cellular infrastructure once it is available-directly between vehicles with or without the use of network involvement for scheduling. The presented approach was tested in simulations using Omnet++ and Simulation of Urban Mobility (SUMO).


Subject(s)
Reproducibility of Results , Computer Simulation
12.
ISA Trans ; 127: 229-238, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35292170

ABSTRACT

This paper studies the problem of secure control of automated vehicles in a platoon-based driving pattern over a vehicular ad-hoc network (VANET) subject to various cyber attacks. The platoon under consideration is a convoy of a leader vehicle whose control input is unknown to its following vehicles and some follower vehicles with uncertain heterogeneous engine time constants, bounded disturbance and noise. First, a local estimator is developed for each follower vehicle so as to construct some confidence ellipsoidal estimation region always enclosing vehicular true state regardless of uncertain heterogenous engine time constants, bounded disturbance and noise. A convex optimization algorithm is proposed to find some optimal ellipsoidal sets and recursively solve out gain matrices of the local estimators. Then, a scalable control protocol employing the state estimates from its local and underlying neighboring estimators is designed to accomplish secure platooning control. Under the derived design technique, the resulting closed-loop platooning tracking errors are proven to remain in the vicinity of zero. Comparative studies are conducted to validate the efficacy of the proposed control method on achieving the satisfactory platooning performance by handling different attack strategies.

13.
Sensors (Basel) ; 22(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35161743

ABSTRACT

This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure a greater flexibility, in the initialization part of the method, an invariant table set is created containing several invariant sets computed for different constraints values. The algorithm was tested in simulation, using both homogeneous and heterogeneous initial conditions for a platoon with four homogeneous vehicles, using a predecessor-following, uni-directionally communication topology. The simulation results show that the coalitions between vehicles are formed in the beginning of the experiment, when the local feasibility of each vehicle is lost. These findings successfully prove the usefulness of the proposed coalitional DMPC method in a vehicle platooning application, and illustrate the robustness of the algorithm, when tested in different initial conditions.


Subject(s)
Algorithms , Communication , Computer Simulation
14.
Sensors (Basel) ; 23(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616656

ABSTRACT

In this paper, we investigate the problem of reducing the use of radio resources for vehicle-to-vehicle communications in an autonomous platooning scenario. Achieving reliable communications, which is a key element allowing for the tight coordination of platoon vehicles' motion, might be challenging in a case of heavy road traffic. Thus, in this paper, we propose to reduce the number of intra-platoon transmissions required to facilitate the safe autonomous control of vehicle mobility, by analyzing the impact of cars' behaviors (in terms of acceleration changes) on the evolution of the inter-vehicle distance errors within the platoon. We derive formulas representing the relation between the platoon leader's acceleration changes and the evolution of the distance error, velocity difference, and the accelerations for the first pair of vehicles. Furthermore, we propose a heuristic algorithm for selection of the intra-platoon messaging period for each platoon vehicle that minimizes the use of radio resources subject to the safety constraint, represented as the fraction of the total time when emergency braking is activated. The presented simulation results indicate that the proposed approach is capable of ensuring safe platoon operation and simultaneously providing a significant reduction in the use of resources, compared with conventional fixed-period transmission.

15.
Sensors (Basel) ; 21(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34770433

ABSTRACT

Cooperative driving is an essential component of intelligent transport systems (ITSs). It promises greater safety, reduced accidents, efficient traffic flow, and fuel consumption reduction. Vehicle platooning is a representative service model for ITS. The principal sub-systems of platooning systems for connected and automated vehicles (CAVs) are cooperative adaptive cruise control (CACC) systems and platoon management systems. Based on vehicle state information received through vehicle-to-vehicle (V2V) communication, the CACC system allows platoon vehicles to maintain a narrower safety distance. In addition, the platoon management system using V2V communications allows vehicles to perform platoon maneuvers reliably and accurately. In this paper, we propose a CACC system with a variable time headway and a decentralized platoon join-in-middle maneuver protocol with a trajectory planning system considering the V2V communication delay for CAVs. The platoon join-in-middle maneuver is a challenging research subject as the research must consider the requirement of a more precise management protocol and lateral control for platoon safety and string stability. These CACC systems and protocols are implemented on a simulator for a connected and automated vehicle system, PreScan, and we validated our approach using a realistic control system and V2V communication system provided by PreScan.


Subject(s)
Automobile Driving , Communication
16.
Front Robot AI ; 8: 611978, 2021.
Article in English | MEDLINE | ID: mdl-34513935

ABSTRACT

Utilizing military convoys in humanitarian missions allows for increased overall performance of healthcare logistical operations. To properly gauge performance of autonomous ground convoy systems in military humanitarian operations, a proper framework for comparative performance metrics needs to be established. Past efforts in this domain have had heavy focus on narrow and specialized areas of convoy performance such as human factors, trust metrics, or string stability analysis. This article reviews available Army doctrine for manned convoy requirements toward healthcare missions and establishes a framework to compare performance of autonomous convoys, using metrics such as spacing error, separation distance, and string stability. After developing a framework of comparison for the convoy systems, this article compares the performance of two autonomous convoys with unique convoy control strategies to demonstrate the application and utility of the framework.

17.
Sensors (Basel) ; 21(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072603

ABSTRACT

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.

18.
Sensors (Basel) ; 21(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920296

ABSTRACT

Vehicle platooning reduces the safety distance between vehicles and the travel time of vehicles so that it leads to an increase in road capacity and to saving fuel consumption. In Europe, many projects for vehicle platooning are being actively developed, but mostly focus on truck platooning on the highway with a simpler topology than that of the urban road. When an existing vehicle platoon is applied to urban roads, many challenges are more complicated to address than highways. They include complex topology, various routes, traffic signals, intersections, frequent lane change, and communication interference depending on a higher vehicle density. To address these challenges, we propose a distributed urban platooning protocol (DUPP) that enables high mobility and maximizes flexibility for driving vehicles to conduct urban platooning in a decentralized manner. DUPP has simple procedures to perform platooning maneuvers and does not require explicit conforming for the completion of platooning maneuvers. Since DUPP mainly operates on a service channel, it does not cause negative side effects on the exchange of basic safety messages on a control channel. Moreover, DUPP does not generate any data propagation delay due to contention-based channel access since it guarantees sequential data transmission opportunities for urban platooning vehicles. Finally, to address a problem of the broadcast storm while vehicles notify detected road events, DUPP performs forwarder selection using an analytic hierarchy process. The performance of the proposed DUPP is compared with that of ENSEMBLE which is the latest European platooning project in terms of the travel time of vehicles, the lifetime of an urban platoon, the success ratio of a designed maneuver, the external cost and the periodicity of the urban platooning-related transmissions, the adaptability of an urban platoon, and the forwarder selection ratio for each vehicle. The results of the performance evaluation demonstrate that the proposed DUPP is well suited to dynamic urban environments by maintaining a vehicle platoon as stable as possible after DUPP flexibly and quickly forms a vehicle platoon without the support of a centralized node.

19.
Sensors (Basel) ; 21(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809473

ABSTRACT

In this paper, we present the development of a low-cost multi-agent system experimental platform for teaching, and research purposes. The platform consists of train-like autonomous agents equipped with local speed estimation, distance sensing to their nearest predecessor, and wireless communications with other agents and a central coordinator. The individual agents can be used for simple PID experiments in a classroom or laboratory setting, while a collection of agents are capable of performing decentralized platooning with cooperative adaptive cruise control in a variety of settings, the latter being the main goal of the platform. The agents are built from low cost components and programmed with open source software, enabling teaching experiences and experimental work with a larger number of agents that would otherwise be possible with other existing solutions. Additionally, we illustrate with experimental results some of the teaching activities that the platform is capable of performing.

20.
Sensors (Basel) ; 21(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546336

ABSTRACT

Connected and autonomous vehicles (CAVs) could reduce emissions, increase road safety, and enhance ride comfort. Multiple CAVs can form a CAV platoon with a close inter-vehicle distance, which can further improve energy efficiency, save space, and reduce travel time. To date, there have been few detailed studies of self-driving algorithms for CAV platoons in urban areas. In this paper, we therefore propose a self-driving architecture combining the sensing, planning, and control for CAV platoons in an end-to-end fashion. Our multi-task model can switch between two tasks to drive either the leading or following vehicle in the platoon. The architecture is based on an end-to-end deep learning approach and predicts the control commands, i.e., steering and throttle/brake, with a single neural network. The inputs for this network are images from a front-facing camera, enhanced by information transmitted via vehicle-to-vehicle (V2V) communication. The model is trained with data captured in a simulated urban environment with dynamic traffic. We compare our approach with different concepts used in the state-of-the-art end-to-end self-driving research, such as the implementation of recurrent neural networks or transfer learning. Experiments in the simulation were conducted to test the model in different urban environments. A CAV platoon consisting of two vehicles, each controlled by an instance of the network, completed on average 67% of the predefined point-to-point routes in the training environment and 40% in a never-seen-before environment. Using V2V communication, our approach eliminates casual confusion for the following vehicle, which is a known limitation of end-to-end self-driving.

SELECTION OF CITATIONS
SEARCH DETAIL