ABSTRACT
Triacontanol is a long-chain primary alcohol derived from policosanol, known for its diverse biological activities, including functioning as a plant growth regulator and exhibiting anti-inflammatory and antitumoral effects. However, its application is limited due to its high hydrophobicity, resulting in poor absorption and reduced therapeutic effectiveness. A potential solution to this problem is the use of niosomes. Niosomes are carriers composed of non-ionic surfactants, cholesterol, charge-inducing agents, and a hydration medium. They are effective in encapsulating drugs, improving their solubility and bioavailability. The objective of this study was to optimize and synthesize nano-niosomes for the encapsulation of triacontanol. Niosomes were synthesized using a thin-film hydration method combined with ultrasonication, following a Box-Behnken design. Niosomes were characterized using various techniques including dynamic light scattering, Fourier-transform infrared spectroscopy (FTIR), confocal microscopy, high-resolution scanning electron microscopy, and transmission electron microscopy (TEM). Formulation 14 of niosomes achieved the desired size, polydispersity index (0.198 ± 0.008), and zeta potential (-31.28 ± 1.21). FTIR analysis revealed a characteristic signal in the 3400-300 cm-1 range, indicating intermolecular interactions due to a bifurcated hydrogen bond between cholesterol and S60. Confocal microscopy confirmed the presence of triacontanol through Nile Red fluorescence. TEM revealed the spherical structure of niosomes.
Subject(s)
Fatty Alcohols , Liposomes , Liposomes/chemistry , Fatty Alcohols/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Drug Carriers/chemistry , Solubility , Drug Compounding/methods , Cholesterol/chemistry , Surface-Active Agents/chemistryABSTRACT
Policosanol is a blend of long-chain aliphatic alcohols (LCAAs) and is well-known for several health-beneficial activities; however, the functionality of policosanol varied substantially based on the composition of LCAAs. In this study, two distinct policosanols, Raydel® (extracted from Cuban sugarcane wax) and BOC Sciences (extracted from Chinese sugarcane wax), were dietarily supplemented (0.1% w/w) for 12 weeks in hyperlipidemic zebrafish to examine their influence on the blood lipid profile and functionality of the liver, kidney, and reproductive organs. The results demonstrated a noteworthy impact of both policosanols on preventing high-cholesterol diet (HCD, 4% w/w)-induced dyslipidemia by decreasing total cholesterol (TC) and triglyceride (TG) levels in the plasma. However, compared to BOC Sciences, the Raydel® policosanol exhibited a significantly (p < 0.05) higher efficacy in reducing HCD-induced TC and TG levels. A substantial effect was observed exclusively with the Raydel® policosanol in mitigating HCD-impaired low-density-lipoprotein cholesterol (LDL-C) and high-density-lipoprotein cholesterol (HDL-C) levels. Hepatic histology and immunohistochemistry (IHC) analysis revealed the higher efficacy of Raydel® policosanol over BOC Sciences policosanol to prevent HCD-provoked fatty liver changes, cellular senescence, oxidative stress, and interleukin (IL)-6 production. Consistently, a significantly higher effect of Raydel® over BOC Sciences policosanol was observed on the protection of kidney, testis, and ovary morphology hampered by HCD consumption. In addition, Raydel® policosanol exhibited a notably stronger effect (~2-fold, p < 0.05) on the egg-laying ability of the zebrafish compared to policosanol from BOC Sciences. Furthermore, Raydel® policosanol plays a crucial role in improving embryo viability and mitigating developmental defects caused by the intake of an HCD. Conclusively, Raydel® policosanol displayed a substantially higher efficacy over BOC Sciences policosanol to revert HCD-induced dyslipidemia, the functionality of vital organs, and the reproductive health of zebrafish.
ABSTRACT
Policosanol is a mixture of long-chain aliphatic alcohols (LCAAs) derived from various plant and insect origins that are marketed by various companies with distinct formulations and brand names. Policosanols offer several beneficial effects to treat dyslipidemia and hypertension; however, a comprehensive functionality comparison of various policosanol brands has yet to be thoroughly explored. In the present study five distinct policosanol brands from different origins and countries, Raydel-policosanol, Australia (PCO1), Solgar-policosanol, USA (PCO2), NutrioneLife-monacosanol, South Korea (PCO3), Mothernest-policosanol, Australia (PCO4), and Peter & John-policosanol, New Zealand (PCO5) were compared via dietary supplementation (1% in diet, final wt/wt) to zebrafish for six weeks to investigate their impact on survivability, blood lipid profile, and functionality of vital organs under the influence of a high-cholesterol diet (HCD, final 4%, wt/wt). The results revealed that policosanol brands (PCO1-PCO5) had a substantial preventive effect against HCD-induced zebrafish body weight elevation and hyperlipidemia by alleviating total cholesterol (TC) and triglycerides (TG) in blood. Other than PCO3, all the brands significantly reduced the HCD's elevated low-density lipoprotein cholesterol (LDL-C). On the contrary, only PCO1 displayed a significant elevation in high-density lipoprotein cholesterol (HDL-C) level against the consumption of HCD. The divergent effect of PCO1-PCO5 against HCD-induced hepatic damage biomarkers, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), was observed. PCO1, PCO2, and PCO4 efficiently curtailed the AST and ALT levels; however, PCO3 and PCO5 potentially aggravated the HCD's elevated plasma AST and ALT levels. Consistently, the hepatic histology outcome revealed the least effectiveness of PCO3 and PCO5 against HCD-induced liver damage. On the contrary, PCO1 exhibited a substantial hepatoprotective role by curtailing HCD-induced fatty liver changes, cellular senescent, reactive oxygen species (ROS), and interleukin-6 (IL-6) production. Likewise, the histological outcome from the kidney, testis, and ovary revealed the significant curative effect of PCO1 against the HCD-induced adverse effects. PCO2-PCO5 showed diverse and unequal results, with the least effective being PCO3, followed by PCO5 towards HCD-induced kidney, testis, and ovary damage. The multivariate interpretation based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) validated the superiority of PCO1 over other policosanol brands against the clinical manifestation associated with HCD. Conclusively, different brands displayed distinct impacts against HCD-induced adverse effects, signifying the importance of policosanol formulation and the presence of aliphatic alcohols on the functionality of policosanol products.
ABSTRACT
Obesity and overweight, frequently caused by a lack of exercise, are associated with many metabolic diseases, such as hypertension, diabetes, and dyslipidemia. Aerobic exercise effectively increases the high-density lipoproteins-cholesterol (HDL-C) levels and alleviates the triglyceride (TG) levels. The consumption of Cuban policosanol (Raydel®) is also effective in enhancing the HDL-C quantity and HDL functionality to treat dyslipidemia and hypertension. On the other hand, no study has examined the effects of a combination of high-intensity exercise and policosanol consumption in obese subjects to improve metabolic disorders. In the current study, 17 obese subjects (average BMI 30.1 ± 1.1 kg/m2, eight male and nine female) were recruited to participate in a program combining exercise and policosanol (20 mg) consumption for 12 weeks. After completion, their BMI, waist circumference, total fat mass, systolic blood pressure (SBP), and diastolic blood pressure (DBP) reduced significantly up to around -15%, -13%, -33%, -11%, and -13%, respectively. In the serum lipid profile, at Week 12, a significant reduction was observed in the total cholesterol (TC) and triglyceride (TG) levels, up to -17% and -54% from the baseline, respectively. The serum HDL-C was elevated by approximately +12% from the baseline, as well as the percentage of HDL-C in TC, and HDL-C/TC (%), was enhanced by up to +32% at Week 12. The serum coenzyme Q10 (CoQ10) level was increased 1.2-fold from the baseline in all participants at Week 12. In particular, the male participants exhibited a 1.4-fold increase from the baseline. The larger rise in serum CoQ10 was correlated with the larger increase in the serum HDL-C (r = 0.621, p = 0.018). The hepatic function parameters were improved; the serum γ-glutamyl transferase decreased at Week 12 by up to -55% (p < 0.007), while the aspartate aminotransferase and alanine transaminase levels diminished within the normal range. In the lipoprotein level, the extent of oxidation and glycation were reduced significantly with the reduction in TG content. The antioxidant abilities of HDL, such as paraoxonase (PON) and ferric ion reduction ability (FRA), were enhanced significantly by up to 1.8-fold and 1.6-fold at Week 12. The particle size and number of HDL were elevated up to +10% during the 12 weeks, with a remarkable decline in the TG content, glycation extent, and oxidation. The improvements in HDL quality and functionality were linked to the higher survivability of adult zebrafish and their embryos, under the co-presence of carboxymethyllysine (CML), a pro-inflammatory molecule known to cause acute death. In conclusion, 12 weeks of Cuban policosanol (Raydel®, 20 mg) consumption with high-intensity exercise displayed a significant improvement in blood pressure, body fat mass, blood lipid profile without liver damage, CoQ10 metabolism, and renal impairment.
ABSTRACT
Many policosanols from different sources, such as sugar cane and rice bran, have been marketed worldwide to improve blood lipid profiles. But so far, no comparative study has commenced elucidating the effect of different policosanols to improve the blood lipid profile and other beneficial effects. This study compared the efficacy of four different policosanols, including one sugar cane wax alcohol from Cuba (Raydel®) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran), to treat dyslipidemia in hyperlipidemic zebrafish. After 12 weeks of consumption of each policosanol (final 0.1% in diet, wt/wt) and a high-cholesterol diet (HCD, final 4%, wt/wt), the Raydel policosanol group and the Xi'an Natural policosanol group showed the highest survivability, of approximately 81%. In contrast, the Xi'an Realin policosanol and the Shaanxi policosanol groups showed 57% and 67% survivability, respectively. Among the five HCD groups, the Raydel policosanol group showed the lowest serum total cholesterol (TC, p < 0.001 versus HCD control) and triglyceride (p < 0.001 versus HCD control), with the highest percentage of high-density lipoproteins-cholesterol in TC. The Raydel policosanol group also showed the lowest serum aspartate aminotransferase and alanine aminotransferase levels, with the least infiltration of inflammatory cells and interleukin-6 production in hepatocytes with a marked reduction in reactive oxygen species (ROS) production and fatty liver changes. In the ovary, the Raydel policosanol group also showed the highest content of mature vitellogenic oocytes with the lowest production of reactive oxygen species and cellular apoptosis in ovarian cells. In the testes, the Raydel policosanol group also showed the healthiest morphology for spermatogenesis, with the lowest interstitial area and reactive oxygen species production in testicular cells. Conclusively, among the tested policosanols, Cuba (Raydel®) policosanol exhibited a comparatively better effect in maintaining zebrafish body weight, survivability, blood lipid profile, hepatic function biomarkers, fatty liver changes, ROS generation, inflammation, and restoration of the cell morphology in ovaries and testes affected by the HCD consumption.
Subject(s)
Dyslipidemias , Fatty Alcohols , Fatty Liver , Animals , Female , Male , Cholesterol , Dyslipidemias/drug therapy , Fatty Liver/drug therapy , Ovary , Reactive Oxygen Species , Testis , Zebrafish , Fatty Alcohols/pharmacologyABSTRACT
Reconstituted high-density lipoproteins (rHDL) containing each policosanol from Cuba (Raydel®), China (Shaanxi Pioneer), and the United States (Lesstanol®) were synthesized to compare the physiological properties of policosanol depending on sources and origin countries. After synthesis with apolipoproteinA-I (apoA-I) into rHDL, all policosanols bound well with phospholipid and apoA-I to form discoidal rHDL. An rHDL containing Cuban policosanol (rHDL-1) showed the largest rHDL particle size of around 83 ± 3 nm, while rHDL containing Chinese policosanol (rHDL-2) or American policosanol (rHDL-3) showed smaller particles around 63 ± 3 nm and 60 ± 2 nm in diameter, respectively. The rHDL-1 showed the strongest anti-glycation activity to protect the apoA-I degradation of HDL from fructose-mediated glycation: approximately 2.7-times higher ability to suppress glycation and 1.4-times higher protection ability of apoA-I than that of rHDL-2 and rHDL-3. The rHDL-1 showed the highest antioxidant ability to inhibit cupric ion-mediated LDL oxidation in electromobility and the quantification of oxidized species. A microinjection of each rHDL into a zebrafish embryo in the presence of carboxymethyllysine (CML) showed that rHDL-1 displayed the strongest anti-oxidant activity with the highest embryo survivability, whereas rHDL-2 and rHDL-3 showed much weaker protection ability, similar to rHDL alone (rHDL-0). An intraperitoneal injection of CML (250 µg) into adult zebrafish caused acute death and hyperinflammation with an elevation of infiltration of neutrophils and IL-6 production in the liver. On the other hand, a co-injection of rHDL-1 resulted in the highest survivability and the strongest anti-inflammatory ability to suppress IL-6 production with an improvement of the blood lipid profile, such as elevation of HDL-C and lowering of the total cholesterol, LDL-cholesterol, and triglyceride. In conclusion, Cuban policosanol exhibited the most desirable properties for the in vitro synthesis of rHDL with the stabilization of apoA-I, the largest particle size, anti-glycation against fructation, and antioxidant activities to prevent LDL oxidation. Cuban policosanol in rHDL also exhibited the strongest in vivo antioxidant and anti-inflammatory activities with the highest survivability in zebrafish embryos and adults via the prevention of hyperinflammation in the presence of CML.
Subject(s)
Antioxidants , Maillard Reaction , Animals , Antioxidants/pharmacology , Zebrafish , Apolipoprotein A-I , Interleukin-6 , Lipoproteins, HDL , Anti-Inflammatory Agents/pharmacology , AntibodiesABSTRACT
Policosanol consumption has been associated with treating blood pressure and dyslipidemia by increasing the level of high-density lipoproteins-cholesterol (HDL-C) and HDL functionality. Although policosanol supplementation also ameliorated liver function in animal models, it has not been reported in a human clinical study, particularly with a 20 mg doage of policosanol. In the current study, twelve-week consumption of Cuban policosanol (Raydel®) significantly enhanced the hepatic functions, showing remarkable decreases in hepatic enzymes, blood urea nitrogen, and glycated hemoglobin. From the human trial with Japanese participants, the policosanol group (n = 26, male 13/female 13) showed a remarkable decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) from baseline up to 21% (p = 0.041) and 8.7% (p = 0.017), respectively. In contrast, the placebo group (n = 26, male 13/female 13) showed almost no change or slight elevation. The policosanol group showed a 16% decrease in γ-glutamyl transferase (γ-GTP) at week 12 from the baseline (p = 0.015), while the placebo group showed a 1.2% increase. The policosanol group exhibited significantly lower serum alkaline phosphatase (ALP) levels at week 8 (p = 0.012), week 12 (p = 0.012), and after 4-weeks (p = 0.006) compared to those of the placebo group. After 12 weeks of policosanol consumption, the ferric ion reduction ability and paraoxonase of serum were elevated by 37% (p < 0.001) and 29% (p = 0.004) higher than week 0, while placebo consumption showed no notable changes. Interestingly, glycated hemoglobin (HbA1c) in serum was lowered significantly in the policosanol group 4 weeks after consumption, which was approximately 2.1% (p = 0.004) lower than the placebo group. In addition, blood urea nitrogen (BUN) and uric acid levels were significantly lower in the policosanol group after 4 weeks: 14% lower (p = 0.002) and 4% lower (p = 0.048) than those of the placebo group, respectively. Repeated measures of ANOVA showed that the policosanol group had remarkable decreases in AST (p = 0.041), ALT (p = 0.008), γ-GTP (p = 0.016), ALP (p = 0.003), HbA1c (p = 0.010), BUN (p = 0.030), and SBP (p = 0.011) from the changes in the placebo group in point of time and group interaction. In conclusion, 12 weeks of 20 mg consumption of policosanol significantly enhanced hepatic protection by lowering the serum AST, ALT, ALP, and γ-GTP via a decrease in glycated hemoglobin, uric acid, and BUN with an elevation of serum antioxidant abilities. These results suggest that improvements in blood pressure by consumption of 20 mg of policosanol (Raydel®) were accompanied by protection of liver function and enhanced kidney function.
ABSTRACT
This study evaluated the efficacy and safety of 20 mg of Cuban policosanol in blood pressure (BP) and lipid/lipoprotein parameters of healthy Japanese subjects via a placebo-controlled, randomized, and double-blinded human trial. After 12 weeks of consumption, the policosanol group showed significantly lower BP, glycated hemoglobin (HbA1c), and blood urea nitrogen (BUN) levels. The policosanol group also showed lower aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GTP) levels at week 12 than those at week 0: A decrease of up to 9% (p < 0.05), 17% (p < 0.05), and 15% (p < 0.05) was observed, respectively. The policosanol group showed significantly higher HDL-C level and HDL-C/TC (%), approximately 9.5% (p < 0.001) and 7.2% (p = 0.003), respectively, than the placebo group and a difference in the point of time and group interaction (p < 0.001). In lipoprotein analysis, the policosanol group showed a decrease in oxidation and glycation extent in VLDL and LDL with an improvement of particle shape and morphology after 12 weeks. HDL from the policosanol group showed in vitro stronger antioxidant and in vivo anti-inflammatory abilities. In conclusion, 12 weeks of Cuban policosanolconsumption in Japanese subjects showed significant improvement in blood pressure, lipid profiles, hepatic functions, and HbA1c with enhancement of HDL functionalities.
Subject(s)
Anticholesteremic Agents , Lipoproteins, HDL , Humans , Lipoproteins, HDL/pharmacology , Blood Pressure , Glycated Hemoglobin , East Asian People , Anticholesteremic Agents/pharmacology , Fatty Alcohols/pharmacology , Lipoproteins/pharmacology , Double-Blind MethodABSTRACT
Policosanols from various sources, such as sugar cane, rice bran, and insects, have been marketed to prevent dyslipidemia, diabetes, and hypertension by increasing the blood high-density lipoproteins cholesterol (HDL-C) levels. On the other hand, there has been no study on how each policosanol influences the quality of HDL particles and their functionality. Reconstituted high-density lipoproteins (rHDLs) with apolipoprotein (apo) A-I and each policosanol were synthesized using the sodium cholate dialysis method to compare the policosanols in lipoprotein metabolism. Each rHDL was compared regarding the particle size and shape, antioxidant activity, and anti-inflammatory activity in vitro and in zebrafish embryos. This study compared four policosanols including one policosanol from Cuba (Raydel® policosanol) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran). The synthesis of rHDLs with various policosanols (PCO) from Cuba or China using a molar ratio of 95:5:1:1 with palmitoyloleoyl phosphatidylcholine (POPC): free cholesterol (FC): apoA-I:PCO (wt:wt) showed that rHDL containing Cuban policosanol (rHDL-1) showed the largest particle size and the most distinct particle shape. The rHDL-1 showed a 23% larger particle diameter and increased apoA-I molecular weight with a 1.9 nm blue shift of the maximum wavelength fluorescence than rHDL alone (rHDL-0). Other rHDLs containing Chinese policosanols (rHDL-2, rHDL-3, and rHDL-4) showed similar particle sizes with an rHDL-0 and 1.1-1.3 nm blue shift of wavelength maximum fluorescence (WMF). Among all rHDLs, the rHDL-1 showed the strongest antioxidant ability to inhibit cupric ion-mediated LDL oxidation. The rHDL-1-treated LDL showed the most distinct band intensity and particle morphology compared with the other rHDLs. The rHDL-1 also exerted the highest anti-glycation activity to inhibit the fructose-mediated glycation of human HDL2 with the protection of apoA-I from proteolytic degradation. At the same time, other rHDLs showed a loss of anti-glycation activity with severe degradation. A microinjection of each rHDL alone showed that rHDL-1 had the highest survivability of approximately 85 ± 3%, with the fastest developmental speed and morphology. In contrast, rHDL-3 showed the lowest survivability, around 71 ± 5%, with the slowest developmental speed. A microinjection of carboxymethyllysine (CML), a pro-inflammatory advanced glycated end product, into zebrafish embryos resulted in severe embryo death of approximately 30 ± 3% and developmental defects with the slowest developmental speed. On the other hand, the phosphate buffered saline (PBS)-injected embryo showed 83 ± 3% survivability. A co-injection of CML and each rHDL into adult zebrafish showed that rHDL-1 (Cuban policosanol) induced the highest survivability, around 85 ± 3%, while rHDL-0 showed 67 ± 7% survivability. In addition, rHDL-2, rHDL-3, and rHDL-4 showed 67 ± 5%, 62 ± 37, and 71 ± 6% survivability, respectively, with a slower developmental speed and morphology. In conclusion, Cuban policosanol showed the strongest ability to form rHDLs with the most distinct morphology and the largest size. The rHDL-containing Cuban policosanol (rHDL-1) showed the strongest antioxidant ability against LDL oxidation, anti-glycation activity to protect apoA-I from degradation, and the highest anti-inflammatory activity to protect embryo death under the presence of CML.
Subject(s)
Antioxidants , Saccharum , Animals , Humans , Anti-Inflammatory Agents , Antioxidants/metabolism , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Embryo Loss , Ethanol , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Saccharum/metabolism , Sugar Alcohols , Zebrafish/metabolismABSTRACT
The current study compared three policosanols from Cuba (sugarcane, Raydel®, policosanol (1), China (rice bran, Shaanxi, policosanol (2), and the USA (sugarcane, Lesstanol®, policosanol (3) in the treatment of dyslipidemia and protection of the liver, ovary, and testis in hypercholesterolemic zebrafish. After twelve weeks of supplementation of each policosanol (PCO, final 0.1% in diet, w/w) with a high cholesterol diet (HCD, final 4%, w/w), the Raydel policosanol (PCO1) group showed the highest survivability, approximately 89%. In contrast, Shaanxi policosanol (PCO2) and Lesstanol policosanol (PCO3) produced 73% and 87% survivability, respectively, while the HCD alone group showed 75% survivability. In the 12th week, the PCO1 group demonstrated the most modest increase in body weight along with significantly lower levels of total cholesterol (TC) and triglycerides (TG) in comparison to the HCD control group. Additionally, the PCO1 group exhibited the highest proportion of high-density lipoprotein (HDL)-cholesterol within TC. Notably, the PCO1 group displayed the lowest level of aspartate aminotransferase and alanine aminotransferase, minimal infiltration of inflammatory cells, reduced interleukin (IL)-6 production in the liver, a notable decline in reactive oxygen species (ROS) generation and mitigated fatty liver changes. HCD supplementation induced impairment of kidney morphology with the greatest extent of ROS production and apoptosis. On the other hand, the PCO 1 group showed a remarkably improved morphology with the least ROS generation and apoptosis. Within the ovarian context, the PCO1 group exhibited the most substantial presence of mature vitellogenic oocytes, accompanied by minimal levels of ROS and apoptosis. Similarly, in the testicular domain, the PCO1 group showcased optimal morphology for spermatogenesis, characterized by the least interstitial area and diminished production of ROS in testicular cells. At week 8, the PCO1 group showed the highest egg-laying ability, with around 244 eggs produced per mating. In contrast, the HCD alone, PCO2, and PCO3 groups showed significantly lower egg-laying ability (49, 59, and 86 eggs, respectively). The embryos from the PCO1 group exhibited the highest survivability with the fastest swimming ability and developmental speed. These results suggest that PCO1 consumption significantly enhanced the reproduction system, egg-laying ability, and embryo survivability. In conclusion, among the three policosanols, Cuban (Raydel®) policosanol had the strongest effect on survivability, improving dyslipidemia, liver protection, kidney, ovary, and testis with a restoration of the cell morphology, and the least ROS production and apoptosis-induced by HCD supplementation.
ABSTRACT
Policosanol supplementation has been reported to increase high-density lipoprotein (HDL)-cholesterol (HDL-C). However, the association between Cuban policosanol supplementation and HDL cholesterol efflux capacity (CEC), an important function of HDL, remains unclear. We performed a lipoprotein analysis investigating 32 Japanese healthy participants (placebo, n = 17 or policosanol supplementation for 12 weeks, n = 15) from a randomized Cuban policosanol clinical trial. First, HDL CEC and HDL-related factors were measured before and after policosanol supplementation. Then, through electron microscopy after ultracentrifugation and high-performance liquid chromatography, HDL morphology and subclass were analyzed, respectively. Finally, the effects of policosanol supplementation regarding HDL function, HDL-related factors, and HDL morphology/component were examined. Cuban policosanol considerably increased the HDL CEC and HDL-C and apolipoprotein A-I (ApoA-I) levels. Furthermore, policosanol supplementation led to larger HDL particles, increased cholesterol content in larger HDL particles, and reduced triglyceride content in smaller HDL particles. In participants with high baseline HDL-C levels, the policosanol effects for HDL CEC are observed. HDL CEC fluctuation induced by policosanol was highly associated with HDL-C and ApoA-I changes. In conclusion, for the first time, we demonstrated that policosanol supplementation increased the HDL CEC in healthy participants.
ABSTRACT
Skeletal muscle plays crucial roles in locomotion, protein reservoir, and maintenance of metabolic homeostasis. Loss of muscle, known as muscle atrophy, causes the metabolic diseases such as type 2 diabetes mellitus, hypertension, and so on. Therefore, great efforts have been devoted to prevent the muscle atrophy. Policosanols are a mixture of long chain fatty alcohols extracted from various natural sources. They have long been used as functional foods to lower the level of serum lipids, including triacylglycerol and cholesterol, and to protect against inflammatory stress. In this study, we examine the protective effect and molecular mechanism of Cuban policosanol on skeletal muscle cell death and mitochondrial dysfunction using lipopolysaccharide-treated C2C12 cells. Our results demonstrated that policosanol significantly rescued cell survival (40% vs. 88%; LPS vs. LPS+policosanol) via activation of the Akt pathway, resulting in inhibition of apoptosis (p<0.05). Moreover, policosanol restored the LPS-induced repression of collagen by two fold (0.33±0.04 vs. 0.67±0.03 compared to that of control; LPS vs. LPS+policosanol) via activation of ERK-mTOR-p70S6K pathways. In addition, policosanol increased the mitochondrial fusion by regulating the activities of DRP1 and Mfn2, leading to ameliorate the mitochondrial dysfunction induced by LPS. Improved mitochondria function increased the oxygen consumption rate with glucose as fuel source, indicating that policosanol could shift the glucose metabolism from lactate fermentation, induced by lipopolysaccharide, to oxidative phosphorylation. Thus, policosanol is a promising agent for preventing the inflammation-induced muscle cell death and mitochondrial dysfunction.
Subject(s)
Diabetes Mellitus, Type 2 , Lipopolysaccharides , Animals , Apoptosis , Cell Line , Diabetes Mellitus, Type 2/metabolism , Fatty Alcohols/pharmacology , MAP Kinase Signaling System , Mice , Mitochondria/metabolism , Mitochondria/pathology , Muscular Atrophy/metabolism , Myoblasts/metabolism , Proto-Oncogene Proteins c-akt/metabolismABSTRACT
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline or dementia, the number of patients with AD is continuously increasing. Although a lot of great progress has been made in research and development of AD therapeutics, there is no fundamental cure for this disease yet. This study demonstrated the memory-improving effects of Cuban policosanol (PCO) in 5xFAD mice, which is an animal model of AD. Following 4-months of treatment with PCO in 5xFAD mice, we found that the number of amyloid plaques decreased in the brain compared to the vehicle-treated 5xFAD mice. Long-term PCO treatment in 5xFAD mice resulted in the reduction of gliosis and abnormal inflammatory cytokines level (interleukin [IL]-1ß, IL-6, and tumor necrosis factor [TNF]-α) in the cortex and hippocampus. Levels of lipid peroxide (4-hydroxynonenal [4-HNE]) and superoxide dismutase (SOD1 and SOD2) levels were also recoverd in the brains of PCO-treated 5xFAD mice. Notably, PCO administration reduced memory deficits in the passive avoidance test, as well as synaptic loss (PSD-95, synaptophysin) in 5xFAD mice. Collectively, we identified the potential effects of PCO as a useful supplement to delay or prevent AD progression by inhibiting the formation of Aß plaques in the brain.
ABSTRACT
The current study was designed to investigate the short-term effects of policosanol consumption on blood pressure (BP) and the lipid parameters in healthy Korean participants with prehypertension. A total of 84 healthy participants were randomly allocated to three groups receiving placebo, 10 mg of policosanol, or 20 mg of policosanol for 12 weeks. Based on an average of three measurements of peripheral BP, the policosanol 20 mg group exhibited the most significant reduction, that is, up to 7.7% reduction of average systolic BP (SBP) from 136.3 ± 6.1 mmHg (week 0) to 125.9 ± 8.6 mmHg (week 12, p < 0.001). Between group comparisons using repeated measures ANOVA showed that the policosanol 20 mg group had a significant reduction of SBP at 12 weeks (p = 0.020) and a reduction of diastolic BP (DBP) at 8 weeks (p = 0.041) and 12 weeks (p = 0.035). The policosanol 10 mg and 20 mg groups showed significant reductions in aortic SBP of 7.4% and 8.3%, respectively. The policosanol groups showed significant reductions of total cholesterol (TC) of 9.6% and 8.6% and low-density lipoproteins (LDL-C) of 21% and 18% for 10 mg and 20 mg of policosanol, respectively. Between group comparisons using repeated measures ANOVA showed that the policosanol (10 mg and 20 mg) groups at 12 weeks had a significant reduction of TC (p = 0.0004 and p = 0.001) and LDL-C (p = 0.00005 and p = 0.0001) and elevation of %HDL-C (p = 0.048 and p = 0.014). In conclusion, 12-week consumption of policosanol resulted in significant reductions of peripheral SBP and DBP, aortic SBP and DBP, mean arterial pressure (MAP), and serum TC and LDL-C with elevation of % HDL-C.
Subject(s)
Anticholesteremic Agents/therapeutic use , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Fatty Alcohols/therapeutic use , Lipids/blood , Adult , Aged , Asian People , Double-Blind Method , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
We investigated the antihypertensive effect of policosanol on spontaneously hypertensive rats (SHR). For this, we analyzed blood pressure, blood lipid, and lipoprotein properties in male SHR after consumption of Cuban policosanol (PCO). The experimental groups were as follows: normotensive Wistar Kyoto (WKY) control, SHR group fed normal diet (ND), SHR group fed 20 mg of PCO, SHR group fed 100 mg of PCO, and SHR group fed 200 mg of PCO per kg of body weight. After eight weeks, the SHR control group showed gradual increases up to 21% in systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared with values at week 0. However, policosanol consumption had a dose-dependent reduction effect on SBP and also reduced DBP up to 17% in a dose-dependent manner. Heart rate (HR) bpm increased by six percent in the SHR control, whereas the 20 mg, 100 mg, and 200 mg of policosanol groups showed a reduction of 36%, 28%, and 34% respectively. Although serum total cholesterol (TC) level of SHR was not affected by policosanol consumption (70â»80 mg/dL), serum triglyceride (TG) level significantly decreased in the SHR + 200 mg of PCO group. Serum high-density lipoprotein cholesterol (HDL-C) level was also significantly elevated by policosanol consumption. The % HDL-C/TC ratio was elevated in the policosanol group up to 67â»70%, whereas the SHR control group showed a ratio of 58%. Serum cholesteryl ester transfer protein (CETP) activity was reduced by policosanol in a dose-dependent manner. Although the serum glutamate oxaloacetate transaminase (GOT)/ glutamate pyruvate transaminase (GPT) were similar across all groups, policosanol consumption caused reduction of reactive oxygen species (ROS) levels in hepatic tissue. The SHR control group showed a 2.1-fold higher serum C-reactive protein (CRP) level than the WKY group, whereas the CRP level decreased in the SHR + 200 mg of PCO group (up to 45%) than SHR control group. Aldosterone level was reduced in the policosanol group (up to 34%) in a dose-dependent manner compared to the control. In conclusion, eight weeks of policosanol consumption in SHR resulted in remarkable reduction of blood pressure, serum aldosterone, and serum TG levels along with the elevation of HDL-C and improvement of hepatic inflammation.
Subject(s)
Anticholesteremic Agents/pharmacology , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Fatty Alcohols/pharmacology , Lipid Metabolism/drug effects , Animals , Antioxidants/pharmacology , Body Weight/drug effects , Cholesterol, HDL/blood , Dose-Response Relationship, Drug , Heart Rate , Lipoproteins/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Rats, Inbred SHRABSTRACT
Metabolic syndrome is closely associated with higher risk of hypertension, cardiovascular disease (CVD), diabetes and stroke. The aim of the present study was to investigate the long-term effects of policosanol supplementation on blood pressure (BP) and the lipid profile in healthy Korean participants with pre-hypertension (systolic 120-139 mmHg, diastolic 85-89 mmHg). This randomized, double-blinded, and placebo-controlled trial included 84 healthy participants who were randomly assigned to three groups receiving 10 mg of policosanol, 20 mg of policosanol, or placebo for 24 weeks. The BP, lipid profile, and anthropometric factors were measured pre- and post-intervention and then compared. Based on an average of three measurements of brachial BP, the policosanol 20 mg group showed the most significant reduction in average systolic BP (SBP) from 138 ± 12 mmHg at week 0 to 126 ± 13 mmHg at week 24 (p < 0.0001). The policosanol 20 mg group also showed significant reductions in aortic SBP and DBP up to 9% (p = 0.00057) and 8% (p = 0.004), respectively compared with week 0. Additionally, blood renin and aldosterone levels were significantly reduced in the policosanol 20 mg group up to 63% (p < 0.01) and 42% (p < 0.05), respectively, at week 24. For the blood lipid profile, the policosanol 10 mg and 20 mg groups showed significant reductions in total cholesterol (TC) of around 8% (p = 0.029) and 13% (p = 0.0004), respectively, at week 24 compared with week 0. Serum HDL-C level significantly increased up to 16% and 12% in the policosanol 10 mg (p = 0.002) and 20 mg (p = 0.035) group, respectively. The study results suggest that long-term policosanol consumption simultaneously reduces peripheral BP as well as aortic BP accompanied by elevation of HDL-C and % HDL-C in TC in a dose-dependent manner.
ABSTRACT
Resumen Identificar cuáles son los activos que se someterán al proceso de validación es una tarea prioritaria para cualquier empresa que implemente un Sistema de Gestión de la Calidad, lo cual repercute de manera directa en el éxito de cualquier empresa. Como consecuencia de esto en septiembre de 2014 se diseñó un procedimiento en el departamento de Aseguramiento de la Calidad, dirección de Producción, CNIC; con el objetivo de determinar aquellos equipos o sistemas de apoyo auxiliar que serán sometidos al proceso de validación en la fabricación del principio activo del Policosanol (PPG). Para darle cumplimiento a nuestro objetivo el método utilizado se basa en la combinación de técnicas de riesgos tradicionales como son los métodos comparativos, diagramas lógicos de fallas, estudios de riesgo y operatividad, análisis de modos de falla y efectos, y otros. Como resultado se obtuvo un procedimiento general para la aplicación de la técnica de criticidad, la cual denominamos HAZID (HAZard-IDentification), basado en el análisis de riesgos. Como conclusión fundamental se obtiene un criterio de partida para justificar la inclusión de un equipo o sistema al proceso de validación.
Abstract Identifying the assets that will be submitted to the validation process is a priority task for any company that implements a Quality Management System, wicth has a direct impact on the success of any company. Taking into account the previous approach, it was designed in September 2014 a procedure in the department of Quality Assurance, Production Management, CNIC; with the aim of identifying those equipment or auxiliary systems that will be included in the validation process in the manufacture of the active ingredient Policosanol (PPG). To meet the principal goal, it was used a method based on the combination of techniques traditional risks such as comparative methods, fault logic diagrams, risk studies and operability, analysis of failure modes and effects, and others. As a result, it was obtained a general procedure for the implementation of the technique of criticality, it was named HAZID (HAZard-IDentification), based on risk analysis. As a fundamental conclusion, it was obtained a starting point to justify the inclusion of an equipment or auxiliary system to the validation process.
ABSTRACT
Introducción: el policosanol, mezcla de ocho alcoholes purificados de la cera de la caña de azúcar, contiene octacosanol como componente mayoritario. El D-002, mezcla de seis alcoholes alifáticos primarios purificada de la cera de abejas, presenta triacontanol como el componente mayoritario. Aunque ambas sustancias son mezclas de alcoholes de alto peso molecular, exhiben diferente composición y perfil farmacológico como son sus efectos sobre las enzimas del metabolismo del ácido araquidónico: mientras el policosanol inhibe la actividad de ciclooxigenasa (COX)-1, el D-002 inhibe las actividades de la COX y la 5-lipooxigenasa (5-LOX). Objetivo: investigar los efectos del octacosanol y el triacontanol, principales componentes del policosanol y el D-002, respectivamente, sobre las actividades de las enzimas COX y 5-LOX in vitro. Métodos: el policosanol y el triacontanol se suspendieron en vehículo Tween-20/H2O (2 por ciento) (0.6-5000g/mL). Los efectos de la adición de estos alcoholes sobre las actividades de las enzimas COX-1, COX-2 y 5-LOX se evaluaron en microsomas de plaquetas de ratas, microsomas de vesículas seminales de ratas y en preparaciones de polimorfonucleares (PMN) de ratas, respectivamente. Se utilizó indometacina (0.4 µg/mL) como inhibidor de referencia de COX-1 and COX-2 y Lyprinol como inhibidor de 5-LOX. Resultados: la adición de octacosanol inhibió la actividad de COX-1 de modo significativo, marcado (70 por ciento con la concentración mayor) (CI50=143.54 g/mL) y dependiente de la dosis (r=0.991, p <0.001). La adición de triacontanol, sin embargo, no afectó COX-1, pero inhibió de modo significativo y dependiente de la dosis (r=0.985, p <0.001) la actividad de la COX-2 hasta 50 por ciento con 1250 g/mL. En contraste, el octacosanol no modificó la actividad de la COX-2. La indometacina inhibió COX-1...
Introduction: policosanol, a mixture of eight primary aliphatic alcohols purified from sugar cane wax, contains octacosanol as major component. D-002, a mixture of six primary aliphatic alcohols purified from beeswax, presents triacontanol as the main component. Although both substances are high molecular weight alcohol mixtures, they have different compositions and pharmacological effects such as their distinct effects on arachidonic acid metabolism enzymes; whereas policosanol inhibits cyclooxygenase (COX)-1, D-002 inhibits COX and 5-lipoxygenase (5-LOX) activities. Objective: to study the effects of octacosanol and triacontanol, which are main components of policosanol and D-002, respectively on the COX and the 5-LOX enzyme in vitro activities. Methods: triacontanol and octacosanol were suspended in a Tween-20/H2O (2 percent) (0.6-5000 g/mL) vehicle. The effects of adding these alcohols on COX-1, COX-2 and 5-LOX enzymes activities were assessed in rat platelet microsomes, rat seminal vesicle microsomes and rat polymorphonuclear (PMN) preparations, respectively. Indomethacin (0.4µg/mL) was used as reference inhibitor of COX-1 and COX-2, and Lyprinol as 5-LOX inhibitor. Results: octacosanol showed significant, marked (70 percent with highest concentration) (IC50=143.54 g/mL) and dose-dependent (r=0.991, p <0.001) inhibitory action on COX-1 activity. However, Triacontanol did not affect COX-1, but inhibited significantly, depending on dose (r=0.985, p <0.001) the COX-2 activity to 50 percent with 1250 g/mL. In contrast, octacosanol did not change COX-2 activity. Indomethacin inhibited both COX-1...
Subject(s)
Mice , Sugar Alcohols/pharmacology , Enzyme Activation , Sugar Alcohols/chemical synthesisABSTRACT
INTRODUCTION: policosanol, a mixture of eight primary aliphatic alcohols purified from sugar cane wax, contains octacosanol as major component. D-002, a mixture of six primary aliphatic alcohols purified from beeswax, presents triacontanol as the main component. Although both substances are high molecular weight alcohol mixtures, they have different compositions and pharmacological effects such as their distinct effects on arachidonic acid metabolism enzymes; whereas policosanol inhibits cyclooxygenase (COX)-1, D-002 inhibits COX and 5-lipoxygenase (5-LOX) activities. OBJECTIVE: to study the effects of octacosanol and triacontanol, which are main components of policosanol and D-002, respectively on the COX and the 5-LOX enzyme in vitro activities. METHODS: triacontanol and octacosanol were suspended in a Tween-20/H2O (2 %) (0.6-5000 g/mL) vehicle. The effects of adding these alcohols on COX-1, COX-2 and 5-LOX enzymes activities were assessed in rat platelet microsomes, rat seminal vesicle microsomes and rat polymorphonuclear (PMN) preparations, respectively. Indomethacin (0.4µg/mL) was used as reference inhibitor of COX-1 and COX-2, and Lyprinol as 5-LOX inhibitor. RESULTS: octacosanol showed significant, marked (70% with highest concentration) (IC50=143.54 g/mL) and dose-dependent (r=0.991, p <0.001) inhibitory action on COX-1 activity. However, Triacontanol did not affect COX-1, but inhibited significantly, depending on dose (r=0.985, p <0.001) the COX-2 activity to 50 % with 1250 g/mL. In contrast, octacosanol did not change COX-2 activity. Indomethacin inhibited both COX-1 and COX-2 by 83 %. Octacosanol addition was ineffective whereas triacontanol had significant, dose-dependent (r=0.978, p<0.001) and marked effect (79 %) on the 5-LOX activity (IC50=58.74 g/mL). Lyprinol inhibited 5-LOX by 89 %. The inhibitions induced by octacosanol and triacontanol were competitive. CONCLUSIONS: in vitro addition of octacosanol and triacontanol caused differential effects on COX-1, COX-2 and 5-LOX enzyme activities. Whereas octacosanol markedly inhibited COX-1 activity and did not change those of COX-2 and 5-LO, triacontanol markedly inhibited 5-LOX activity, but had moderate effect on COX-2 and did not change COX-1 activity.
INTRODUCCIÓN: el policosanol, mezcla de ocho alcoholes purificados de la cera de la caña de azúcar, contiene octacosanol como componente mayoritario. El D-002, mezcla de seis alcoholes alifáticos primarios purificada de la cera de abejas, presenta triacontanol como el componente mayoritario. Aunque ambas sustancias son mezclas de alcoholes de alto peso molecular, exhiben diferente composición y perfil farmacológico como son sus efectos sobre las enzimas del metabolismo del ácido araquidónico: mientras el policosanol inhibe la actividad de ciclooxigenasa (COX)-1, el D-002 inhibe las actividades de la COX y la 5-lipooxigenasa (5-LOX). OBJETIVO: investigar los efectos del octacosanol y el triacontanol, principales componentes del policosanol y el D-002, respectivamente, sobre las actividades de las enzimas COX y 5-LOX in vitro. MÉTODOS: el policosanol y el triacontanol se suspendieron en vehículo Tween-20/H2O (2 %) (0.6-5000g/mL). Los efectos de la adición de estos alcoholes sobre las actividades de las enzimas COX-1, COX-2 y 5-LOX se evaluaron en microsomas de plaquetas de ratas, microsomas de vesículas seminales de ratas y en preparaciones de polimorfonucleares (PMN) de ratas, respectivamente. Se utilizó indometacina (0.4 µg/mL) como inhibidor de referencia de COX-1 and COX-2 y Lyprinol como inhibidor de 5-LOX. RESULTADOS: la adición de octacosanol inhibió la actividad de COX-1 de modo significativo, marcado (70 % con la concentración mayor) (CI50=143.54 g/mL) y dependiente de la dosis (r=0.991, p <0.001). La adición de triacontanol, sin embargo, no afectó COX-1, pero inhibió de modo significativo y dependiente de la dosis (r=0.985, p <0.001) la actividad de la COX-2 hasta 50 % con 1250 g/mL. En contraste, el octacosanol no modificó la actividad de la COX-2. La indometacina inhibió COX-1 y COX-2 en un 83 %. Mientras la adición del octacosanol no fue efectiva, el triacontanol inhibió de modo significativo, dependiente de la dosis r=0.978, p <0.001) y marcadamente (79 %) la actividad de la 5-LOX (CI50=58.74 g/mL). El Lyprinol inhibió la 5-LOX en un 89 %. Las inhibiciones inducidas por el octacosanol y el triacontanol fueron competitivas. CONCLUSIONES: la adición in vitro de octacosanol y triacontanol produjo efectos diferenciales sobre las actividades enzimáticas de COX-1, COX-2 y 5-LOX. Mientras el octacosanol inhibió marcadamente la actividad de COX-1, sin afectar COX-2 y 5-LOX; el triacontanol inhibió marcadamente 5-LOX, pero moderadamente COX-2, y no cambió la actividad de COX-1.
Subject(s)
Rats , Sugar Alcohols/chemical synthesis , Sugar Alcohols/pharmacology , Enzyme ActivationABSTRACT
Introduction: policosanol, a mixture of higher aliphatic alcohols purified from sugar cane wax, is used to treat hypercholesterolemia. D-002 (Abexol), a mixture of higher aliphatic alcohols from beeswax, is an antioxidant supplement with gastroprotective effects. Then, concomitant intake of D-002 and policosanol may occur in routine practice, so potential pharmacological interactions between them should be researched on. Objective: to find out the influence of policosanol on the gastroprotective effect of D-002 on the ethanol-induced gastric ulcer model. Methods: rats were randomized into eight groups: one treated with the vehicle (control), two with D-002 (25 and 200 mg/kg), two with policosanol (25 and 200 mg/kg), two with the same doses of D-002 + policosanol and other with sucralfate (100 mg/kg). Treatments were given as single oral doses. One hour after treatment, rats received 60% ethanol orally and one hour later they were killed and their stomachs exposed. Effects on ulcer indexes (UI) were assessed. Results: acute oral administration of D-002 (25 and 200 mg/kg) significantly reduced the ulcer indexes by 40 percent and 68 percent, respectively, as compared to the control group, and policosanol by 26 percent and 47 percent, respectively. The concomitant administration of the same doses of D-002 and policosanol significantly decreased ulcer indexes by 64 percent (both given at 25 mg/kg) and by 92 percent (both given at 200 mg/kg) as compared to the respective monotherapies. Sucralfate (100 mg/kg) significantly reduced (@ 99 percent) ulcer indexes compared to the control group. Conclusions: the concomitant oral administration of policosanol with D-00 2 gives greater gastroprotection than D-002 monotherapy, so both products can be taken together(AU)
Introducción: el policosanol, mezcla de alcoholes alifáticos de alto peso molecular obtenida de la cera de caña de azúcar (Saccharum officinarum L), se emplea en el tratamiento de la hipercolesterolemia. El D-002 (Abexol), mezcla de alcoholes alifáticos obtenida de la cera de abejas, es un suplemento antioxidante con efectos gastroprotectores. Así, el consumo concomitante de D-002 y policosanol puede ocurrir en la práctica rutinaria, por lo cual algunas interacciones entre ellos deben ser investigadas. Objetivo: determinar la influencia del policosanol sobre el efecto gastroprotector del D-002 en el modelo de úlcera gástrica inducida por etanol. Métodos: las ratas se distribuyeron en ocho grupos: uno tratado con el vehículo (control), dos con D-002 (25 y 200 mg/kg), dos con policosanol (25 y 200 mg/kg), dos con las mismas dosis de D-002 + policosanol, y otro con sucralfato (100 mg/kg). Los tratamientos se administraron como dosis únicas orales. Una hora después las ratas recibieron por vía oral etanol 60 por ciento y se sacrificaron; los estómagos se extrajeron y se cuantificó el índice de úlceras. Resultados: la administración oral aguda de D-002 (25 y 200 mg/kg) redujo significativamente el índice de úlceras en un 40 por ciento y un 68 por ciento, respectivamente, con respecto al grupo control y el policosanol en un 26 por ciento y un 47 por ciento, respectivamente. La administración concomitante de D-002 y policosanol redujo significativamente el índice de úlceras en un 64por ciento (ambos administrados a 25 mg/kg) y un 92 por ciento (ambos administrados a 250 mg/kg) al compararse con las respectivas monoterapias. Sucralfato (100 mg/kg) redujo significativa y marcadamente (@ 99 por ciento) el índice de úlceras con respecto al grupo control. Conclusiones: la administración oral concomitante de policosanol más D-002 confiere una gastroprotección mayor que las respectivas monoterapias, de modo que pueden ser administrados conjuntamente(AU)