Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Entomol ; 51(2): 505-512, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35024800

ABSTRACT

Numerous lepidopteran adults frequently pick up plant pollen when feeding. Identifying plant species visited by Mamestra brassicae moths could further strengthen our knowledge of their migratory trajectory and the interactions of M. brassicae moths with these plant species. Here, with morphological analysis and DNA metabarcoding of pollen carried by the moths, we determined these plant species visited by M. brassicae during 2015-2018. Pollen grains removed from M. brassicae moths were identified from 25 species (18 were identified to genus), representing at least 19 families, including Pinaceae, Oleaceae, Rosaceae, and Asteraceae, but mainly belonging to Angiospermae, Dicotyledoneae. There were noticeable interannual differences (maximum value: 35.31% in 2018) and seasonal differences (maximum value: 33.28% in April-(including May)-June) in the frequency of M. brassicae moths with adhering pollen, but no noticeable difference based on sex. Meanwhile, we also found pollen from some species such as Citrus sinensis (Rutales: Rutaceae) and Melia azedarach (Rutales: Meliaceae) that grow in southern China, indicating that M. brassicae moths might migrate northward in spring. Our results demonstrate that the M. brassicae moth visits a variety of plant species during migration, and these findings promote our understanding of the interaction between moths and these plant species.


Subject(s)
Magnoliopsida , Moths , Animals , Humans , Plants , Pollen , Seasons
2.
Plant Mol Biol ; 95(1-2): 89-98, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28735504

ABSTRACT

KEY MESSAGE: In this study, we sequenced and analyzed the expression and evolution of rice miRNA genes participating pollen-pistil interaction that is crucial to rice yield. Pollen-pistil interaction is an essential reproductive process for all flowering plants. While microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNA levels in eukaryotic cells, there is little knowledge about which miRNAs involved in the early stages of pollen-pistil interaction in rice and how they evolve under this conserved process. In this study, we sequenced the small RNAs in rice from unpollinated pistil (R0), pistil from 5 min and 15 min after pollination, respectively, to identify known and novel miRNAs that are involved in this process. By comparing the corresponding mRNA-seq dataset, we identified a group of miRNAs with strong negative expression pattern with their target genes. Further investigation of all miRNA loci (MIRNAs) across 1083 public rice accessions revealed significantly reduced genetic diversity in MIRNAs with strong negative expression of their targets when comparing to those with little or no impact on targets during pollen-pistil interaction. Annotation of targets suggested that those MIRNAs with strong impact on targets were pronounced in cell wall related processes such as xylan metabolism. Additionally, plant conserved miRNAs, such as those with functions in gibberellic acid, auxin and nitrate signaling, were also with strong negative expression of their targets. Overall, our analyses identified key miRNAs participating pollen-pistil interaction and their evolutionary patterns in rice, which can facilitate the understanding of molecular mechanisms associated with seed setting.


Subject(s)
Flowers/genetics , Genes, Plant , Genetic Variation , MicroRNAs/genetics , Oryza/genetics , Oryza/physiology , Pollen/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Gene Ontology , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL