Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.357
Filter
1.
J Environ Sci (China) ; 147: 153-164, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003036

ABSTRACT

Heavy metal(loid) (HM) pollution in agricultural soils has become an environmental concern in antimony (Sb) mining areas. However, priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist. Herein, an integrated approach was conducted to distinguish pollution sources and assess human health risk (HHR) and ecological risk (ER) in a typical Sb mining watershed in Southern China. This approach combines absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models with ER and HHR assessments. Four pollution sources were distinguished for both models, and APCS-MLR model was more accurate and plausible. Predominant HM concentration source was natural source (39.1%), followed by industrial and agricultural activities (23.0%), unknown sources (21.5%) and Sb mining and smelting activities (16.4%). Although natural source contributed the most to HM concentrations, it did not pose a significant ER. Industrial and agricultural activities predominantly contributed to ER, and attention should be paid to Cd and Sb. Sb mining and smelting activities were primary anthropogenic sources of HHR, particularly Sb and As contaminations. Considering ER and HHR assessments, Sb mining and smelting, and industrial and agricultural activities are critical sources, causing serious ecological and health threats. This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments. HM pollution management, such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils, is strongly recommended for protecting ecosystems and humans.


Subject(s)
Agriculture , Antimony , Environmental Monitoring , Metals, Heavy , Mining , Soil Pollutants , Antimony/analysis , Risk Assessment , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , China , Soil/chemistry
2.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003066

ABSTRACT

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Subject(s)
Arsenic , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Arsenic/analysis , China , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , Models, Chemical , Models, Theoretical
3.
Environ Res Health ; 2(3): 035007, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38962451

ABSTRACT

Air pollution exposure is associated with adverse respiratory health outcomes. Evidence from occupational and community-based studies also suggests agricultural pesticides have negative health impacts on respiratory health. Although populations are exposed to multiple inhalation hazards simultaneously, multidomain mixtures (e.g. environmental and chemical pollutants of different classes) are rarely studied. We investigated the association of ambient air pollution-pesticide exposure mixtures with urinary leukotriene E4 (LTE4), a respiratory inflammation biomarker, for 75 participants in four Central California communities over two seasons. Exposures included three criteria air pollutants estimated via the Community Multiscale Air Quality model (fine particulate matter, ozone, and nitrogen dioxide) and urinary metabolites of organophosphate (OP) pesticides (total dialkyl phosphates (DAPs), total diethyl phosphates (DE), and total dimethyl phosphates (DM)). We implemented multiple linear regression models to examine associations in single pollutant models adjusted for age, sex, asthma status, occupational status, household member occupational status, temperature, and relative humidity, and evaluated whether associations changed seasonally. We then implemented Bayesian kernel machine regression (BKMR) to analyse these criteria air pollutants, DE, and DM as a mixture. Our multiple linear regression models indicated an interquartile range (IQR) increase in total DAPs was associated with an increase in urinary LTE4 in winter (ß: 0.04, 95% CI: [0.01, 0.07]). Similarly, an IQR increase in total DM was associated with an increase in urinary LTE4 in winter (ß:0.03, 95% CI: [0.004, 0.06]). Confidence intervals for all criteria air pollutant effect estimates included the null value. BKMR analysis revealed potential non-linear interactions between exposures in our air pollution-pesticide mixture, but all confidence intervals contained the null value. Our analysis demonstrated a positive association between OP pesticide metabolites and urinary LTE4 in a low asthma prevalence population and adds to the limited research on the joint effects of ambient air pollution and pesticides mixtures on respiratory health.

4.
Front Endocrinol (Lausanne) ; 15: 1429884, 2024.
Article in English | MEDLINE | ID: mdl-38962683

ABSTRACT

The thyroid gland regulates most of the physiological processes. Environmental factors, including climate change, pollution, nutritional changes, and exposure to chemicals, have been recognized to impact thyroid function and health. Thyroid disorders and cancer have increased in the last decade, the latter increasing by 1.1% annually, suggesting that environmental contaminants must play a role. This narrative review explores current knowledge on the relationships among environmental factors and thyroid gland anatomy and function, reporting recent data, mechanisms, and gaps through which environmental factors act. Global warming changes thyroid function, and living in both iodine-poor areas and volcanic regions can represent a threat to thyroid function and can favor cancers because of low iodine intake and exposure to heavy metals and radon. Areas with high nitrate and nitrite concentrations in water and soil also negatively affect thyroid function. Air pollution, particularly particulate matter in outdoor air, can worsen thyroid function and can be carcinogenic. Environmental exposure to endocrine-disrupting chemicals can alter thyroid function in many ways, as some chemicals can mimic and/or disrupt thyroid hormone synthesis, release, and action on target tissues, such as bisphenols, phthalates, perchlorate, and per- and poly-fluoroalkyl substances. When discussing diet and nutrition, there is recent evidence of microbiome-associated changes, and an elevated consumption of animal fat would be associated with an increased production of thyroid autoantibodies. There is some evidence of negative effects of microplastics. Finally, infectious diseases can significantly affect thyroid function; recently, lessons have been learned from the SARS-CoV-2 pandemic. Understanding how environmental factors and contaminants influence thyroid function is crucial for developing preventive strategies and policies to guarantee appropriate development and healthy metabolism in the new generations and for preventing thyroid disease and cancer in adults and the elderly. However, there are many gaps in understanding that warrant further research.


Subject(s)
Environmental Exposure , Environmental Pollutants , Thyroid Diseases , Thyroid Gland , Humans , Thyroid Gland/drug effects , Thyroid Diseases/epidemiology , Thyroid Diseases/chemically induced , Thyroid Diseases/etiology , Environmental Exposure/adverse effects , Adult , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Endocrine Disruptors/adverse effects , Female , Pregnancy
5.
Front Epidemiol ; 4: 1379271, 2024.
Article in English | MEDLINE | ID: mdl-38962693

ABSTRACT

Introduction: Emerging risk factors for atrial fibrillation (AF) incidence and episodes (exacerbation), the most common and clinically significant cardiac arrhythmia, include air and noise pollution, both of which are emitted during oil and natural gas (O&G) well site development. Methods: We evaluated AF exacerbation risk and proximity to O&G well site development by employing a novel data source and interrupted time-series design. We retrospectively followed 1,197 AF patients living within 1-mile of an O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any O&G well site (unexposed) for AF claims in Colorado's All Payer Claims Dataset before, during, and after O&G well site development. We calculated AF exacerbation risk with multi-failure survival analysis. Results: The analysis of the total study population does not provide strong evidence of an association between AF exacerbation and proximity to O&G wells sites during (HR = 1.07, 95% CI: 0.94, 1.22) or after (HR = 1.01, 95% CI: 0.88, 1.16) development. However, AF exacerbation risk differed by patient age and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well site development, AF exacerbation risk increased by 83% (HR = 1.83, 95% CI: 1.25, 2.66) and emergency room visits for an AF event doubled (HR = 2.55, 95% CI: 1.50, 4.36) during development, with risk increasing with proximity. In female patients living within 0.39 miles of O&G well site development, AF exacerbation risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF exacerbation risk did not persist past the well development period. We did not observe increased AF exacerbation risk in younger or male patients. Discussion: The prospect that proximity to O&G well site development, a significant noise and air pollution source, may increase AF exacerbation risk in older and female AF patients requires attention. These findings support appropriate patient education to help mitigate risk and development of mitigation strategies and regulations to protect the health of populations in O&G development regions.

6.
Geohealth ; 8(7): e2024GH001014, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962697

ABSTRACT

Indonesia faces significant air quality issues due to multiple emissions sources, including rapid urbanization and peatland fires associated with agricultural land management. Limited prior research has estimated the episodic shock of intense fires on morbidity and mortality in Indonesia but has largely ignored the impact of poor air quality throughout the year on biomarkers of cardiovascular disease risk. We conducted a cross-sectional study of the association between particulate matter less than 2.5 microns in diameter (PM2.5) and blood pressure. Blood pressure measurements were obtained from the fifth wave of the Indonesian Family Life Survey (IFLS5), an ongoing population-based socioeconomic and health survey. We used the GEOS-Chem chemical transport model to simulate daily PM2.5 concentrations at 0.5° × 0.625° resolution across the IFLS domain. We assessed the association between PM2.5 and diastolic and systolic blood pressure, using mixed effects models with random intercepts for regency/municipality and household and adjusted for individual covariates. An interquartile range increase in monthly PM2.5 exposure was associated with a 0.234 (95% CI: 0.003, 0.464) higher diastolic blood pressure, with a greater association seen in participants age 65 and over (1.16 [95% CI: 0.24, 2.08]). For the same exposure metric, there was a 1.90 (95% CI: 0.43, 3.37) higher systolic blood pressure in participants 65 and older. Our assessment of fire-specific PM2.5 yielded null results, potentially due to the timing and locations of health data collection. To our knowledge, this is the first study to provide evidence for an association between PM2.5 and blood pressure in Indonesia.

7.
Front Public Health ; 12: 1326659, 2024.
Article in English | MEDLINE | ID: mdl-38962775

ABSTRACT

Introduction: Vehicle emissions have become an important source of urban air pollution, and the assessment of air pollution emission characteristics and health effects caused by specific pollution sources can provide scientific basis for air quality management. Methods: In this paper, vehicle PM2.5 pollution in typical urban agglomerations of China (the Beijing-Tianjin-Hebei urban agglomeration (BTHUA), the triangle of the Central China urban agglomeration (TCCUA) and the Chengdu-Chongqing urban agglomeration (CCUA)) were used as research samples to evaluate the emission characteristics, health effects and economic losses of vehicle PM2.5 pollution based on the emission inventory, air quality model and exposure-response function from 2010 to 2020. Results: The results indicated that PM2.5 emissions from vehicles in the three urban agglomerations during 2010-2020 first showed an upward yearly trend and then showed a slow decrease in recent years. Heavy-duty trucks and buses are the main contribution vehicles of PM2.5, and the contribution rates of light-duty vehicles to PM2.5 is increasing year by year. The contribution rate of PM2.5 in Beijing decreased significantly. In addition to capital cities and municipalities directly under the central Government, the emission of pollutants in other cities cannot be ignored. The evaluation results of the impact of PM2.5 pollution from vehicles on population health show that: the number of each health endpoint caused by PM2.5 pollution from vehicles in the BTHUA and CCUA showed an overall upward trend, while the TCCUA showed a downward trend in recent years. Among them, PM2.5 pollution from vehicles in the three major urban agglomerations cause about 78,200 (95% CI: 20,500-138,800) premature deaths, 122,800 (95% CI: 25,600-220,500) inpatients, and 628,400 (95% CI: 307,400-930,400) outpatients and 1,332,400 (95% CI: 482,700-2,075,600) illness in 2020. The total health economic losses caused by PM2.5 pollution from vehicles in the three major urban agglomerations in 2010, 2015 and 2020 were 68.25 billion yuan (95% CI: 21.65-109.16), 206.33 billion yuan (95% CI: 66.20-326.20) and 300.73 billion yuan (95% CI: 96.79-473.16), accounting for 0.67% (95% CI: 0.21-1.07%), 1.19% (95% CI: 0.38%-1.88%) and 1.21% (95% CI: 0.39%-1.90%) of the total GDP of these cities. Discussion: Due to the differences in vehicle population, PM2.5 concentration, population number and economic value of health terminal units, there are differences in health effects and economic losses among different cities in different regions. Among them, the problems of health risks and economic losses were relatively prominent in Beijing, Chengdu, Chongqing, Tianjin and Wuhan.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Vehicle Emissions , Particulate Matter/analysis , Humans , China , Vehicle Emissions/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/analysis , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Cities , Environmental Monitoring
8.
Front Public Health ; 12: 1390780, 2024.
Article in English | MEDLINE | ID: mdl-38962783

ABSTRACT

Introduction: Globally, air pollution is the leading environmental cause of disease and premature death. Raising awareness through environmental education and adequate communication on air quality could reduce the adverse effects. We aimed to assess the knowledge, attitudes, and practices (KAP) regarding air pollution and health and determine the factors associated with these KAP in children and adolescents. Methods: In 2019-2020, a cross-sectional study was conducted on 6th-11th grade high school students in five municipalities in Colombia. Variables collected included: age, sex, private or public school, any medical history, emergency room visits due to respiratory symptoms in the last year, and whether students played sports. The main exposure was the School Environmental Project. The outcomes were the KAP scale [0% (the lowest score) to 100% (the highest score)]. The factors associated with KAP levels were evaluated with independent mixed regressions due to the multilevel structure of the study (level 1: student; level 2: school), and the exponential coefficients (95% confidence interval-CI) were reported. Results: Among 1,676 students included, 53.8% were females. The median knowledge score about air pollution and its health effects was 33.8% (IQR: 24.0-44.9), 38.6% knew the air quality index, 30.9% knew the air quality alerts that occurred twice a year in these municipalities and 5.3% had high self-perceived knowledge. Positive attitudes, pro-environmental practices, being female, grade level, attending a private school, having respiratory diseases, and the school environmental project importance were associated with higher knowledge scores. The median attitudes score was 78.6% (IQR: 71.4-92.9). Pro-environmental attitudes were associated with knowledge-increasing, being female, attending a private school, and the school environmental project. The median pro-environmental practices score was 28.6% (IQR: 28.6-42.9). During air quality alerts, 11.6% had worn masks, 19% had reduced the opening time of windows and 15.9% avoided leaving home. Pro-environmental practices were associated with knowledge-increasing and attitudes-increasing, and lower practices with higher grade levels, visiting a doctor in the last year, and practicing sports. Discussion: Children and adolescents have low knowledge scores and inadequate pro-environmental practices scores regarding air pollution. However, they demonstrate positive attitudes towards alternative solutions and express important concerns about the planet's future.


Subject(s)
Air Pollution , Health Knowledge, Attitudes, Practice , Students , Humans , Colombia , Cross-Sectional Studies , Female , Male , Students/psychology , Students/statistics & numerical data , Adolescent , Air Pollution/adverse effects , Child , Schools , Surveys and Questionnaires
9.
J Hazard Mater ; 476: 135087, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964042

ABSTRACT

Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.

10.
Water Res ; 261: 121965, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38964216

ABSTRACT

Anthropogenic activities have been releasing mercury for centuries, and despite global efforts to control emissions, concentrations in environmental media remain high. Coastal sediments can be a long-term repository for mercury, but also a secondary source, and competing processes in marine ecosystems can lead to the conversion of mercury into the toxic and bioaccumulative species methylmercury, which threatens ecosystem and human health. We investigate the fate and transport of three mercury species in a coastal lagoon affected by historical pollution using a novel high-resolution finite element model that integrates mercury biogeochemistry, sediment dynamics and hydrodynamics. The model resolves mercury dynamics in the seawater and the seabed taking into account partitioning, transport driven by water and sediment, and photochemical and microbial transformations. We simulated three years (early 2000s, 2019, and 2020) to assess the spatio-temporal distribution of mercury species concentrations and performed a sensitivity analysis to account for uncertainties. The modeled mercury species concentrations show high temporal and spatial variability, with water concentrations in some areas of the lagoon exceeding those of the open Mediterranean Sea by two orders of magnitude, consistent with available observations from the early 2000s. The results support conclusions about the importance of different processes in shaping the environmental gradients of mercury species. Due to the past accumulation of mercury in the lagoon sediments, inorganic mercury in the water is closely related to the resuspension of contaminated sediments, which is significantly reduced by the presence of benthic vegetation. The gradients of methylmercury depend on the combination of several factors, of which sediment resuspension and mercury methylation are the most relevant. The results add insights into mercury dynamics at coastal sites characterized by a combination of past pollution (i.e. sediment enrichment) and erosive processes, and suggest possible nature-based mitigation strategies such as the preservation of the integrity of benthic vegetation and morphology.

11.
Environ Res ; : 119553, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964573

ABSTRACT

Evidence regarding the link between long-term ambient ozone (O3) exposure and childhood sleep disorders is little. This study aims to examine the associations between long-term exposure to O3 and sleep disorders in children. We conducted a population-based cross-sectional survey, including 185,428 children aged 6 to 18 years in 173 schools across 14 Chinese cities during 2012 and 2018. Parents or guardians completed a checklist using Sleep Disturbance Scale for Children, and O3 exposure at residential and school addresses was estimated using a satellite-based spatiotemporal model. We used generalized linear mixed models to test the associations with adjustment for factors including socio-demographic variables, lifestyle, meteorology and multiple pollutants. Mean concentrations of O3, particulate matter with diameters ≤2.5 mm (PM2.5) and nitrogen dioxide (NO2) were 88.9 µg/m3, 42.5 µg/m3 and 34.4 µg/m3, respectively. O3 and NO2 concentrations were similar among provinces, while PM2.5 concentration varied significantly among provinces. Overall, 19.4% of children had at least one sleep disorder. Long-term exposure to O3 was positively associated with odds of sleep disorders for all subtypes. For example, each interquartile increment in home-school O3 concentrations was associated with a higher odds ratio for global sleep disorder, at 1.22 (95% confidence interval: 1.18, 1.26). Similar associations were observed for sleep disorder subtypes. The associations remained similar after adjustment for PM2.5 and NO2. Moreover, these associations were heterogeneous regionally, with more prominent associations among children residing in southeast region than in northeast and northwest regions in China. We concluded that long-term exposure to O3 is positively associated with risks of childhood sleep disorders. These associations varied by geographical region of China.

12.
Article in English | MEDLINE | ID: mdl-38965110

ABSTRACT

Phthalate esters (PAEs), widely recognized as synthetic organic compounds with extensive production and utilization, are known to disrupt physiological processes in both animals and humans, even at low environmental concentrations. This study investigated the occurrence, distribution, and potential ecological risk of five representative PAEs (DMP, Dimethyl phthalate; DEP, Diethyl phthalate; DBP, Dibutyl phthalate; DiBP, Diisobutyl phthalate; DEHP, Bis(2-ethylhexyl) phthalate) in a typical lake (Chaohu Lake, China). It was found that PAEs were detected in both the aqueous (1.09-6.402 µg/L) and solid phases (0.827-6.602 µg/g) of Chaohu Lake. Notably, DiBP and DBP were the predominant PAEs in the water, and DiBP and DEHP were the most prevalent in the sediments. The concentrations of PAEs exhibited significant seasonal variations in the aqueous phases, with total PAEs in summer being nearly twice those in winter. Toxicity assessments revealed that DEHP, DBP, and DiBP posed high risks to the survival of three indicator organisms (algae, Daphnia, and fish) in the aqueous phase. In the solid phase, the exceeding rate of DiBP was as high as 92.9%. On the other hand, DBP and DEHP generally presenting moderate risk, although some sites were identified as high-risk. This study's analysis of PAEs concentrations in Chaohu Lake reveals a discernible increasing trend when compared with historical data. These findings underscore the urgent need for interventions to mitigate the ecological threats posed by PAEs in Chaohu Lake.

13.
Bull Environ Contam Toxicol ; 113(1): 4, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965118

ABSTRACT

To clarify gaseous elemental mercury (GEM) in suburban megacities in the Yangtze River Delta region, China, we observed GEM concentrations from December 2019 to November 2020 in Wujing town, a suburban area of Shanghai. The annual mean GEM concentration was 1.44 ± 0.88 ng m-3. Compared with the historical monitoring data of GEM in Shanghai over the past 10 years, the concentration of GEM showed a decreasing trend. The monthly mean concentrations of GEM showed clear seasonal variation, with higher values in the spring and winter. In spring and winter, typical Hg pollution events were observed, which could be mostly associated with increased local anthropogenic activity and temperature inversion. The results of the correlation analysis of the daily mean GEM concentrations with the AQI and backward trajectory calculations indicate that mercury pollution at monitoring sites can be affected by local, regional and interregional influences.


Subject(s)
Air Pollutants , Environmental Monitoring , Mercury , Mercury/analysis , China , Air Pollutants/analysis , Seasons
14.
J Inflamm (Lond) ; 21(1): 24, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961398

ABSTRACT

INTRODUCTION: Pollution harms the health of people with asthma. The effect of the anti-inflammatory cholinergic pathway in chronic allergic inflammation associated to pollution is poorly understood. METHODS: One hundred eight animals were divided into 18 groups (6 animals). Groups included: wild type mice (WT), genetically modified with reduced VAChT (VAChTKD), and those sensitized with ovalbumin (VAChTKDA), exposed to metal powder due to iron pelletizing in mining company (Local1) or 3.21 miles away from a mining company (Local2) in their locations for 2 weeks during summer and winter seasons. It was analyzed for hyperresponsivity, inflammation, remodeling, oxidative stress responses and the cholinergic system. RESULTS: During summer, animals without changes in the cholinergic system revealed that Local1 exposure increased the hyperresponsiveness (%Rrs, %Raw), and inflammation (IL-17) relative to vivarium animals, while animals exposed to Local2 also exhibited elevated IL-17. During winter, animals without changes in the cholinergic system revealed that Local2 exposure increased the hyperresponsiveness (%Rrs) relative to vivarium animals. Comparing the exposure local of these animals during summer, animals exposed to Local1 showed elevated %Rrs, Raw, and IL-5 compared to Local 2, while in winter, Local2 exposure led to more IL-17 than Local1. Animals with VAChT attenuation displayed increased %Rrs, NFkappaB, IL-5, and IL-13 but reduced alpha-7 compared to animals without changes in the cholinergic system WT. Animals with VAChT attenuation and asthma showed increased the hyperresponsiveness, all inflammatory markers, remodeling and oxidative stress compared to animals without chronic lung inflammation. Exposure to Local1 exacerbated the hyperresponsiveness, oxidative stressand inflammation in animals with VAChT attenuation associated asthma, while Local2 exposure led to increased inflammation, remodeling and oxidative stress. CONCLUSIONS: Reduced cholinergic signaling amplifies lung inflammation in a model of chronic allergic lung inflammation. Furthermore, when associated with pollution, it can aggravate specific responses related to inflammation, oxidative stress, and remodeling.

15.
Int J Epidemiol ; 53(4)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38961644

ABSTRACT

BACKGROUND: Numerous studies have linked fine particulate matter (PM2.5) to increased cardiovascular mortality. Less is known how the PM2.5-cardiovascular mortality association varies by use of cardiovascular medications. This study sought to quantify effect modification by statin use status on the associations between long-term exposure to PM2.5 and mortality from any cardiovascular cause, coronary heart disease (CHD), and stroke. METHODS: In this nested case-control study, we followed 1.2 million community-dwelling adults aged ≥66 years who lived in Ontario, Canada from 2000 through 2018. Cases were patients who died from the three causes. Each case was individually matched to up to 30 randomly selected controls using incidence density sampling. Conditional logistic regression models were used to estimate odds ratios (ORs) for the associations between PM2.5 and mortality. We evaluated the presence of effect modification considering both multiplicative (ratio of ORs) and additive scales (the relative excess risk due to interaction, RERI). RESULTS: Exposure to PM2.5 increased the risks for cardiovascular, CHD, and stroke mortality. For all three causes of death, compared with statin users, stronger PM2.5-mortality associations were observed among non-users [e.g. for cardiovascular mortality corresponding to each interquartile range increase in PM2.5, OR = 1.042 (95% CI, 1.032-1.053) vs OR = 1.009 (95% CI, 0.996-1.022) in users, ratio of ORs = 1.033 (95% CI, 1.019-1.047), RERI = 0.039 (95% CI, 0.025-0.050)]. Among users, partially adherent users exhibited a higher risk of PM2.5-associated mortality than fully adherent users. CONCLUSIONS: The associations of chronic exposure to PM2.5 with cardiovascular and CHD mortality were stronger among statin non-users compared to users.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Particulate Matter , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Male , Aged , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Case-Control Studies , Ontario/epidemiology , Cardiovascular Diseases/mortality , Aged, 80 and over , Coronary Disease/mortality , Coronary Disease/epidemiology , Stroke/mortality , Stroke/epidemiology , Environmental Exposure/adverse effects , Logistic Models , Risk Factors , Independent Living , Odds Ratio
16.
Arh Hig Rada Toksikol ; 75(2): 155-158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38963139

ABSTRACT

The invasion of Ukraine and military operations around Ukrainian nuclear power plants and other nuclear facilities have prompted us to search for radiocaesium in mosses from the Kopacki Rit Nature Park in Croatia, since mosses are known bioindicators of airborne radioactive pollution, and Kopacki Rit is a known low radiocaesium background area. Sampling was finished in August 2023, and our analysis found no elevated radiocaesium levels. Kopacki Rit therefore remains a suitable place for future detection of anthropogenic radioactive pollutants.


Subject(s)
Cesium Radioisotopes , Radiation Monitoring , Croatia , Ukraine , Cesium Radioisotopes/analysis , Radiation Monitoring/methods , Nuclear Power Plants , Air Pollutants, Radioactive/analysis , Humans
17.
Environ Pollut ; 358: 124461, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964643

ABSTRACT

Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.

18.
Mar Pollut Bull ; 205: 116670, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968744

ABSTRACT

The study assessed persistent organic pollutants (POPs) in Caretta caretta turtles along Turkish coasts, analyzing bioaccumulation in accessible organs and discerning sex-related differences. Ten adult turtles (5 males, 5 females) from Mugla province were sampled post-mortem. Various tissues were analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs) using gas chromatography-mass spectrometry. DDT distribution showed no sex-based difference, with concentrations highest in fat tissue followed by liver, kidney, muscle, spleen, and heart. Male PCB concentrations ranked highest in fat, followed by kidney, liver, spleen, muscle, and heart, while females showed a similar trend. PAH concentrations were highest in fat for both sexes, followed by various organs. Limited PBDE concentrations hindered comprehensive evaluation. Overall, C. caretta act as effective bioindicators for monitoring environmental pollution, with certain POPs exhibiting sex and organ-based variations.

19.
Environ Pollut ; : 124509, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968981

ABSTRACT

The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n=33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n=21) e.g. lead and cadmium. Few studies investigated chemicals (n=7) or built environmental factors (n=5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.

20.
Environ Geochem Health ; 46(8): 268, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954115

ABSTRACT

This study employed the groundwater pollution index to assess the appropriateness of groundwater for human consumption. Additionally, the hazard index was utilized to evaluate the potential non-carcinogenic risks associated with fluoride and nitrate exposure among children, women, and men in the study region. A total of 103 samples were collected from the Aurangabad district of Bihar. The analyzed samples were assessed using several physicochemical parameters. Major cations in the groundwater are Ca2+ > Mg2+ and major anions are HCO3- > Cl- > SO42- > NO3- > F- > PO43-. Around 17% of the collected groundwater samples surpassed the allowable BIS concentration limits for Nitrate, while approximately 11% surpassed the allowed limits for fluoride concentration. Principal component analysis was utilized for its efficacy and efficiency in the analytical procedure. Four principal components were recovered that explained 69.06% of the total variance. The Hazard Quotient (HQ) of nitrate varies between 0.03-1.74, 0.02-1.47, and 0.03-1.99 for females, males, and children, respectively. The HQ of fluoride varies between 0.04-1.59, 0.04-1.34, and 0.05-1.82 for females, males, and children, respectively. The central part of the district was at high risk according to the spatial distribution maps of the total hazard index (THI). Noncarcinogenic risks due to THI are 47%, 37%, and 28% for children, females, and males, respectively. According to the human health risk assessment, children are more prone to getting affected by polluted water than adults. The groundwater pollution index (GPI) value ranges from 0.46 to 2.27 in the study area. Seventy-five percent of the samples fell under minor pollution and only one fell under high pollution. The spatial distribution of GPI in the research area shows that the central region is highly affected, which means that this water is unsuitable for drinking purposes.


Subject(s)
Fluorides , Groundwater , Nitrates , Water Pollutants, Chemical , Groundwater/chemistry , Fluorides/analysis , Humans , Nitrates/analysis , Water Pollutants, Chemical/analysis , Female , Risk Assessment , Male , Child , India , Geographic Information Systems , Principal Component Analysis , Environmental Monitoring/methods , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...