ABSTRACT
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73-2.24 eV, while the Tauc band gap was in the range of 1.68-2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics.
ABSTRACT
Bacterial adhesion to the surface of materials is the first step in biofilm formation, which will lead to conditions that may compromise the health status of patients. Recently, polydopamine (PDA) has been proposed as an antibacterial material. Therefore, the objective of the current work was to assess and compare the adhesion of Streptococcus mutans to the surface of poly(methyl methacrylate) (PMMA) discs that were modified using PDA following a biomimetic approach versus smooth PDA-coated PMMA surfaces. In addition, an assessment of the growth inhibition by PDA was performed. PMMA discs were manufactured and polished; soft lithography, using the topography from the Crocosmia aurea leaf, was used to modify their surface. PDA was used to smooth-coat PMMA discs by dip-coating. The growth inhibition was measured using an inhibition halo. The surfaces were characterized by means of atomic force microscopy (AFM), the contact angle (CA), and Fourier-transform infrared spectroscopy (FTIR). Polydopamine exhibited a significant antibacterial effect when used directly on the S. mutans planktonic cells, but such an effect was not as strong when modifying the PMMA surfaces. These results open the possibility of using polydopamine to reduce the adhesion and growth of S. mutans, which might have important consequences in the dental field.
ABSTRACT
The wide application of additive manufacturing in dentistry implies the further investigation into oral micro-organism adhesion and biofilm formation on vat-photopolymerization (VP) dental resins. The surface characteristics and microbiological analysis of a VP dental resin, printed at resolutions of 50 µm (EG-50) and 100 µm (EG-100), were evaluated against an auto-polymerizing acrylic resin (CG). Samples were evaluated using a scanning electron microscope, a scanning white-light interferometer, and analyzed for Candida albicans (CA) and Streptococcus mutans (SM) biofilm, as well as antifungal and antimicrobial activity. EG-50 and EG-100 exhibited more irregular surfaces and statistically higher mean (Ra) and root-mean-square (rms) roughness (EG-50-Ra: 2.96 ± 0.32 µm; rms: 4.05 ± 0.43 µm/EG-100-Ra: 3.76 ± 0.58 µm; rms: 4.79 ± 0.74 µm) compared to the CG (Ra: 0.52 ± 0.36 µm; rms: 0.84 ± 0.54 µm) (p < 0.05). The biomass and extracellular matrix production by CA and SM and the metabolic activity of SM were significantly decreased in EG-50 and EG-100 compared to CG (p < 0.05). CA and SM growth was inhibited by the pure unpolymerized VP resin (48 h). EG-50 and EG-100 recorded a greater irregularity, higher surface roughness, and decreased CA and SM biofilm formation over the CG.
ABSTRACT
OBJECTIVES: The purpose of this study was (i) to investigate whether nanocomposite poly(methyl-methacrylate)-zinc oxide nanowires (PMMA-ZnO-NWs) have C. albicans antibiofilm activity; (ii) to evaluate the interaction between components of the nanocomposites based on PMMA-ZnO-NWs by Raman spectroscopy; and (iii) to assess ultrastructural alterations. DESIGN: Sixty-eight rectangles (17 PMMA (control) and 51 PMMA-ZnO-NWs (250, 500, 1000 ppm ZnO nanowires) were fabricated. C. albicans ATCC 10231 and a C. albicans clinical strain were tested. Adherence, biofilm formation and ultrastructural alterations were assessed by transmission electron microscopy. Raman mapping images and spectra were analyzed using main component analysis. RESULTS: Nanocomposite PMMA-ZnO-NWs inhibited the formation of C. albicans biofilms 94% at 1000 ppm and 80% at 500 ppm against both C. albicans strains. PMMA-ZnO-NWs induced ultrastructural alterations, including cell wall damage and disorganization of the cytoplasmic membrane, resulting in cell lysis. Raman spectroscopy showed new vibrational modes (300-365-485-600 cm-1) for PMMA and ZnO-NW interactions. CONCLUSIONS: PMMA-ZnO-NWs inhibited C. albicans dose-dependent biofilm formation and led to changes in the structures and cell membrane. Raman spectroscopy showed chemical interactions between ZnO-NWs and PMMA, as suggested by the appearance of new bands at 301 and 485 cm-1.
ABSTRACT
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
ABSTRACT
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
ABSTRACT
Acrylic bone cements (ABC) are widely used in orthopedics for joint fixation, antibiotic release, and bone defect filling, among others. However, most commercially available ABCs exhibit a lack of bioactivity and are susceptible to infection after implantation. These disadvantages generate long-term loosening of the prosthesis, high morbidity, and prolonged and expensive treatments. Due to the great importance of acrylic bone cements in orthopedics, the scientific community has advanced several efforts to develop bioactive ABCs with antibacterial activity through several strategies, including the use of biodegradable materials such as chitosan (CS) and nanostructures such as graphene oxide (GO), with promising results. This paper reviews several studies reporting advantages in bioactivity and antibacterial properties after incorporating CS and GO in bone cements. Detailed information on the possible mechanisms by which these fillers confer bioactive and antibacterial properties to cements, resulting in formulations with great potential for use in orthopedics, are also a focus in the manuscript. To the best of our knowledge, this is the first systematic review that presents the improvement in biological properties with CS and GO addition in cements that we believe will contribute to the biomedical field.
Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Bone Cements/pharmacology , Chitosan/pharmacology , Graphite/pharmacology , Osteoarthritis/drug therapy , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Biocompatible Materials/chemistry , Bone Cements/chemistry , Carbohydrate Conformation , Chitosan/chemistry , Graphite/chemistry , Materials Testing , Microbial Sensitivity Tests , Osteoarthritis/microbiologyABSTRACT
Abstract The purpose of this study was to compare biofilm formation on materials used for the fabrication of implant-supported dental prostheses. Twenty discs (D=15 mm, H=3 mm) were fabricated from one of the following restorative materials: yttria tetragonal zirconia polycrystal (Y-TZP); commercially pure titanium (CP-Ti); or heat-cured polymethyl methacrylate (PMMA). Specimens were polished following standard protocols. A non-contact profilometer (NPFLEX, Bruker, UK) was used to assess the surface roughness of each disk; results were reported as Ra (µm). Five strains of Gram-negative bacteria frequently associated with peri-implantitis, Aggregatibacter actinomycetemcomitans, Candida. albicans, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia, were cultured on hand-polished discs fabricated from heat-cured PMMA, Y-TZP, or CP-Ti to compare biofilm formation on each type of material. The results were reported as colony-forming units per milliliter (CFU/mL). One-way ANOVA and post hoc tests were used to compare surface roughness and bacterial colonization on the respective materials. Statistical significance was set at a = 0.05. Discs fabricated from Y-TZP had a significantly higher Ra value (350 ± 30 µm) than either PMMA, or CP-Ti discs. Discs fabricated from either Y-TZP and CP-Ti may exhibit less colonization by bacteria associated with peri-mucositis and peri-implantitis. Y-TZP and CP-Ti are suggested materials for fabrication of implant-supported prostheses, considering biofilm formation.
Resumo O objetivo deste estudo foi comparar a formação de biofilme em materiais utilizados na confecção de próteses dentárias implantossuportadas. Vinte discos (D = 15 mm, H = 3 mm) foram confeccionados com um dos seguintes materiais restauradores: zircônia tetragonal policristalina estabilizada por ítrio (Y-TZP); titânio comercialmente puro (CP-Ti); ou polimetilmetacrilato (PMMA). As amostras foram polidas seguindo protocolos padrão. Um perfilômetro sem contato (NPFLEX, Bruker, UK) foi usado para avaliar a rugosidade da superfície de cada disco; os resultados foram relatados como Ra (µm). Cinco cepas de bactérias Gram-negativas freqüentemente associadas a peri-implantite, Aggregatibacter actinomycetemcomitans, Candida. albicans, Porphyromonas gingivalis, Prevotella intermedia e Tannerella forsythia, foram cultivadas em discos polidos à mão feitos de PMMA, Y-TZP ou CP-Ti para comparar a formação de biofilme em cada tipo de material. Os resultados foram relatados como unidades formadoras de colônias por mililitro (UFC/mL). Análise de variância a um fator e testes post hoc foram usados para comparar a rugosidade da superfície e a colonização bacteriana nos respectivos materiais. A significância estatística foi estabelecida em a=0,05. Os discos feitos de Y-TZP tiveram um valor Ra significativamente mais alto (350 ± 30 µm) do que os discos de PMMA ou CP-Ti. Os discos fabricados com Y-TZP e CP-Ti podem apresentar menor colonização por bactérias associadas à perimucosite e peri-implantite. Considerando O Y-TZP e CP-Ti são materiais indicados para a confecção de próteses implantossuportadas, considerando a formação de biofilme
Subject(s)
Humans , Dental Implants , Peri-Implantitis , Surface Properties , Titanium , BiofilmsABSTRACT
Despite the potential of acrylic bone cement (ABC) loaded with chitosan (CS) for orthopedic applications, there are only a few in vitro studies of this composite with CS loading ≤ 15 wt.% evaluated in bioactivity tests in simulated body fluid (SBF) for duration > 30 days. The purpose of the present work was to address this shortcoming of the literature. In addition to bioactivity, a wide range of cement properties were determined for composites with CS loading ranging from 0 to 20 wt.%. These properties included maximum exotherm temperature (Tmax), setting time (tset), water contact angle, residual monomer content, flexural strength, bending modulus, glass transition temperature, and water uptake. For cement with CS loading ≥ 15 wt.%, there was an increase in bioactivity, increase in biocompatibility, decrease in Tmax, increase in tset, all of which are desirable trends, but increase in residual monomer content and decrease in each of the mechanical properties, with each of these trends, were undesirable. Thus, a composite with CS loading of 15 wt.% should be further characterized to explore its suitability for use in low-weight-bearing applications, such as bone void filler and balloon kyphoplasty.
ABSTRACT
The current paucity of effective and affordable drugs for the treatment of leishmaniasis renders the search for new therapeutic alternatives a priority. Gallic acid-related compounds display anti-parasitic activities and their incorporation into drug carrier systems, such as polymeric nanoparticles may be a viable alternative for leishmaniasis treatment. Therefore, this study focused on the synthesis and characterization of octyl gallate (G8) loaded poly(methyl methacrylate) (PMMA) nanoparticles via miniemulsion polymerization in order to increase the leishmanicidal activity of this compound. G8 loaded PMMA nanoparticles presented a spherical morphology with a mean size of 108 nm, a negatively charged surface (-33 ± 5 mV) and high encapsulation efficiency (83% ± 5). Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed that G8 was encapsulated in PMMA nanoparticles and presented a biphasic release profile. The G8 loaded PMMA nanoparticles did not present cytotoxic effect on human red blood cells. G8 loaded PMMA nanoparticles displayed a leishmanicidal activity almost three times higher than free G8 while the cytotoxic activity against human THP-1 cells remained unchanged.
Subject(s)
Drug Carriers/chemistry , Gallic Acid/analogs & derivatives , Leishmania/drug effects , Polymethyl Methacrylate/chemistry , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/pharmacology , Caco-2 Cells , Cell Line , Drug Liberation , Emulsions/chemistry , Gallic Acid/administration & dosage , Gallic Acid/chemistry , Gallic Acid/pharmacology , Hemolysis/drug effects , Humans , Leishmaniasis/drug therapy , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Trypanocidal Agents/chemistryABSTRACT
An experimental protocol was studied to improve the adhesion of a polymeric poly(methyl methacrylate) coating that was modified with silver nanoparticles to an aluminum alloy, AA2024. The nanoparticles were incorporated into the polymeric matrix to add the property of inhibiting biofilm formation to the anticorrosive characteristics of the film, thus also making the coating antibiocorrosive. The protocol consists of functionalizing the surface through a pseudotransesterification treatment using a methyl methacrylate monomer that bonds covalently to the surface and leaves a terminal double bond that promotes and directs the polymerization reaction that takes place in the process that follows immediately after. This results in more compact and thicker poly(methyl methacrylate) (PMMA) coatings than those obtained without pseudotransesterification. The poly(methyl methacrylate) matrix modified with nanoparticles was obtained by incorporating both the nanoparticles and the methyl methacrylate in the reactor. The in situ polymerization involved combining the pretreated AA2024 specimens combined with the methyl methacrylate monomer and AgNps. The antibiofilm capacity of the coating was evaluated against P. aeruginosa, with an excellent response. Not only did the presence of bacteria decrease, but the formation of the exopolymer subunits was 99.99% lower than on the uncoated aluminum alloy or the alloy coated with unmodified poly(methyl methacrylate). As well and significantly, the potentiodynamic polarization measurements indicate that the PMMA-Ag coating has a good anticorrosive property in a 0.1-M NaCl medium.
Subject(s)
Alloys , Aluminum , Anti-Infective Agents , Coated Materials, Biocompatible , Metal Nanoparticles , Polymethyl Methacrylate , Silver , Alloys/chemistry , Aluminum/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Photoelectron Spectroscopy , Polymethyl Methacrylate/chemistry , Pseudomonas aeruginosa/drug effects , Surface PropertiesABSTRACT
A new biomedical material to be used as part of acrylic bone cement formulations is described. This new material is tough, its Young's Modulus is similar to the one of poly (methylmethacrylate) and the contrast agent, usually employed in acrylic bone cements, is homogeneously distributed among the polymeric matrix. Additionally, its wear coefficient is 66% lower than the one measured in poly(methyl methacrylate). The developed material is a branched polymer with polyisoprene backbone and poly(methyl methacrylate) side chains, which are capable of retaining barium sulphate nanoparticles thus avoiding their aggregation. The grafting reaction was carried out in presence of the nanoparticles, using methyl methacrylate as solvent. From the (1)H-NMR spectra it was possible to determine the average number of MMA units per unit of isoprene (3.75:1). The ability to retain nanoparticles (about 8wt.%), attributed to their interaction with the polymer branches, was determined by thermogravimetric analysis and confirmed by FTIR and microscopy techniques. By SEM microscopy it was also possible to determine the homogeneous spatial distribution of the barium sulphate nanoparticles along the polymer matrix.
Subject(s)
Biocompatible Materials/chemistry , Bone Cements/chemistry , Contrast Media/chemistry , Polymethyl Methacrylate/chemistry , Elastic Modulus , Materials Testing , Rubber/chemistryABSTRACT
Praziquantel (PZQ) is the drug recommended by the World Health Organization for treatment of schistosomiasis. However, the treatment of children with PZQ tablets is complicated due to difficulties to adapt the dose and the extremely bitter taste of PZQ. For this reason, poly (methyl methacrylate) nanoparticles loaded with Praziquantel (PZQ-NP) were developed for preparation of a new formulation to be used in the suspension form. For this reason, the main aim of the present study was to evaluate the pharmacokinetic (PK) profile of PZQ-NP, through HPLC-MS/MS assays. Analyses were performed with an Omnisphere C18 column (5.0 µm×4.6 mm×150.0 mm), using a mixture of an aqueous solution containing 0.1 wt% of formic acid and methanol (15:85-v/v) as the mobile phase at a flow rate of 0.800mL/min. Detection was performed with a hybrid linear ion-trap triple quadrupole mass spectrometer with multiple reactions monitoring in positive ion mode via electrospray ionization. The monitored transitions were m/z 313.18>203.10 for PZQ and m/z 285.31>193.00 for the Internal Standard. The method was validated with the quantification limit of 1.00 ng/mL, requiring samples of 25 µL for analyses. Analytic responses were calibrated with known concentration data, leading to correlation coefficients (r) higher than 0.99. Validation performed with rat plasma showed that PZQ was stable for at least 10 months when stored below -70 °C (long-term stability), for at least 17 h when stored at room temperature (RT, 22 °C) (short-term stability), for at least 47 h when stored at room temperature in auto-sampler vials (post-preparative stability) and for at least 8 successive freeze/thaw cycles at -70 °C. For PK assays, Wistar rats, weighing between 200 and 300 g were used. Blood samples were collected from 0 to 24 h after oral administration of single doses of 60 mg/kg of PZQ-NP or raw PZQ (for the control group). PZQ was extracted from plasma by liquid-liquid extraction with terc-butyl methyl ether. The values obtained for maximum concentration (C(max)) and area under curve (AUC) for the PZQ-NP group were about 3 times smaller than the respective values obtained for the control group. However, the time for achieving maximum concentration (T(max)), the elimination constant (Ke) and the half-life time of elimination (T(½ß)) were not statistically different. These results suggest that PZQ absorption is probably the rate-limiting step for obtainment of better PK parameters for PZQ-NP. Thus, further studies are needed to understand both the PZQ-NP absorption mechanisms and the drug diffusion process through the polymer matrix in vivo, in order to improve the PZQ-NP release profile.
Subject(s)
Nanoparticles/metabolism , Polymethyl Methacrylate/pharmacokinetics , Praziquantel/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/methods , Female , Nanoparticles/analysis , Polymethyl Methacrylate/analysis , Praziquantel/analysis , Rats , Rats, WistarABSTRACT
Introducción: se define como craneoplastia a la reparación quirúrgica de los defectos óseos craneanos. En nuestro medio el material utilizado mayormente es el hueso autólogo criopreservado (HACp) y, en caso de no contar con dicho tejido, el Polimetilmetacrilato (PMMA) es de elección. Objetivo: Se plantea un estudio retrospectivo observacional a fin de analizar y comparar complicaciones en pacientes sometidos a craneoplastias con HACp en comparación a un grupo de pacientes a los que se les realizó craneoplastia con PMMA. Materiales y métodos: Se incluyeron pacientes que fueron sometidos a craneopatías durante un periodo de 5 años (2008-2013). El seguimiento delos pacientes fue de al menos 12 meses. Se analizaron variables relacionadas a complicaciones tempranas y tardías. Resultados: 63 pacientes recibieron craneoplastia con HACp (31 pacientes, 52%) o polimetilmetacrilato (31 pacientes, 49%). La tasa de complicación global fue del 36,6%. Doce pacientes (19,04%) requirieron tratamiento quirúrgico. Las complicaciones más frecuentes fueron las colecciones subcutáneas no infectadas (19%), seguidas por las infecciones de heridas (17%). No existen diferencias estadísticamente significativas en cuanto a para complicaciones, tanto globales como en las distintas categorías (p>0,05), para ambas técnicas quirúrgicas. Conclusión: Las craneoplastias tanto con HACp como aquellas con PMMA presentan una alta tasa de complicaciones. En nuestra serie no se hallaron diferencias entre ambos grupos estudiados.
Introduction: cranioplasty is defined as the surgical procedure to cover a skull bone defect. In our institution, we mainly use cryopreserved autologous bone graft (HACp), and if it is not available, polymethylmethacrylate is chosen (PMMA). Objective: We performed an observational retrospective study to assess complications in both groups of patients. Materials and Methods: Patients who underwent cranioplasty between 2008 and 2013 were included. Minimum follow up was 12 months. Variables related with early and late complications were analyzed. Results: 63 patients received cranioplasty consisting of autologous bone graft (32 patients, 52%) or PMMA (31 patients, 48%). The global complications rate was 36.6%. 12 patients (19.04%) required surgical treatment for these complications. The most common complications were sterile persistent subcutaneous fluid collection (19%) and wound infection (17%). No differences in complications rates were found between both groups (p>0.05). Conclusions: Cranioplasty following craniectomy is associated with a high complication rate. In our series, both groups showed no differences in complications rates.
Subject(s)
Bone Diseases , Polymethyl Methacrylate , SkullABSTRACT
Different materials like glass, silicon and poly(methyl methacrylate) (PMMA) are being used to immobilise enzymes in microchannels. PMMA shows advantages such as its low price, biocompatibility and attractive mechanical and chemical properties. Despite this, the introduction of reactive functional groups on PMMA is still problematic, either because of the complex chemistry or extended reaction time involved. In this paper, a new methodology was developed to immobilise glucose oxidase (GOx) in PMMA microchannels, with the benefit of a rapid immobilisation process and a very simple route. The new procedure involves only two steps, based on the reaction of 5.0% (w/w) polyethyleneimine (PEI) with PMMA in a dimethyl sulphoxide medium, followed by the immobilisation of glucose oxidase using a solution containing 100U enzymes and 1.0% (v/v) glutaraldehyde. The reactors prepared in this way were evaluated by a flowing system with amperometric detection (+0.60V) based on the oxidation of the H2O2 produced by the reactor. The microreactor proposed here was able to work with high bioconversion and a frequency of 60 samples h(-1), with detection and quantification limits of 0.50 and 1.66µmol L(-1), respectively. Michaelis-Menten parameters (Vmax and KM) were calculated as 449±47.7nmol min(-1) and 7.79±0.98mmol. Statistical evaluations were done to validate the proposed methodology. The content of glucose in natural and commercial coconut water samples was evaluated using the developed method. Comparison with spectrophotometric measurements showed that both methodologies have a very good correlation (tcalculated, 0.05, 4=1.35Subject(s)
Electrochemical Techniques/methods
, Enzymes, Immobilized/chemistry
, Glucose Oxidase/chemistry
, Polymethyl Methacrylate/chemistry
, Dimethyl Sulfoxide/chemistry
, Electrochemical Techniques/instrumentation
, Enzymes, Immobilized/metabolism
, Glucose/chemistry
, Glucose/metabolism
, Glucose Oxidase/metabolism
, Glutaral/chemistry
, Hydrogen Peroxide/chemistry
, Hydrogen Peroxide/metabolism
, Kinetics
, Oxidation-Reduction
, Polyethyleneimine/chemistry
, Reproducibility of Results
, Spectrophotometry/methods
ABSTRACT
This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glass- poly(methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2 O5 -11Na2 O (BV11) and 44.5CaO-44.5P2 O5 -6Na2 O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG) techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 ± 0.02 wt % for BV11sil glass and 0.93 ± 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 (2-) and HPO4 (2-) in its structure after soaking for 30 days occurred.
Subject(s)
Bisphenol A-Glycidyl Methacrylate/metabolism , Bone Cements/chemistry , Calcium Phosphates/chemistry , Glass/chemistry , Polymethyl Methacrylate/chemistryABSTRACT
The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering.