Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.523
Filter
1.
Int J Biol Macromol ; : 135959, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317288

ABSTRACT

Flexible wearable strain sensors exist the advantages of high resolution, lightweight, wide measurement range, which have unlimited potential in fields such as soft robotics, electronic skin, and artificial intelligence. However, current flexible sensors based on hydrogels still have some defects, including poor mechanical properties, self-adhesive properties and bacteriostatic properties. In this study, A conductive hydrogel Sodium Ligninsulfonate (LGS)@PANI-Ag-poly(vinyl alcohol) (PVA) hydrogels consisting of lignosulfonate-doped polyaniline (LGS@PANI), silver nitrate, and PVA interactions were designed and prepared for sensing applications. Here, the abundant reactive functional groups of lignosulfonates not only improve the electrochemical and electrical conductivity of polyaniline, thereby increasing its potential for sensing and capacitor applications, but also provide excellent mechanical properties (0.71 MPa), self-adhesion (81.27 J/m2) and ultraviolet (UV) resistance (UV inhibition close to 100 %) to the hydrogel. In addition, the hydrogel exhibited rich multifunctional properties, including tensile strain resistance (up to 397 %), antimicrobial properties (up to 100 % inhibition of Escherichia coli and Staphylococcus aureus), high sensitivity (gauge factor, GF = 4.18), and a rapid response time (100 ms). The LGS@PANI-Ag-PVA hydrogels showed potential for wearable sensors that monitor various biosignals from the human body, as well as human-computer interaction, artificial intelligence and other diverse fields.

2.
Heliyon ; 10(17): e37061, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39319120

ABSTRACT

This paper contributed with new findings to understand and characterize a heavy metal adsorption on a composite adsorbent. The synthesized polypyrrole-polyaniline@rice husk ash (PPY-PANI@RHA) was prepared and used as an adsorbent for the removal of hexavalent chromium Cr(VI). The adsorption isotherms of Cr(VI) ions on PPY-PANI@RHA were experimentally determined at pH 2, and at different adsorption temperatures (293, 303, and 313 K). Multi-layer model developed using statistical physics formalism was applied to theoretically analyze and characterize the different interactions and ion exchanges during the adsorption process for the elimination of this toxic metal from aqueous solutions, and to attribute new physicochemical interpretation of the process of adsorption. The physicochemical structures and properties of the synthesized PPY-PANI@RHA were characterized via Fourier transform infrared spectroscopy (FTIR). Fitting findings showed that the mechanism of adsorption of Cr(VI) on PPY-PANI@RHA was a multi-ionic mechanism, where one binding site may be occupied by one and two ions. It may also be noticed that the temperature augmentation generated the activation of more functional groups of the composite adsorbent, facilitating the interactions of metal ions with the binding sites and the access to smaller pore. The energetic characterization suggested that the mechanism of adsorption of the investigated systems was exothermic and Cr(VI) ions were physisorbed on PPY-PANI@RHA surface via electrostatic interaction, reduction of Cr(VI) to Cr(III), hydrogen bonding, and ion exchange. Overall, the utilization of the theory of statistical physics provided fruitful and profounder analysis of the adsorption mechanism. The estimation of the pore size distribution (PSD) of the polypyrrole-polyaniline@rice husk ash using the statistical physics approach was considered stereographic characterization of the adsorbent (here PPY-PANI@RHA was globally a meso-porous adsorbent). Lastly, the mechanism of Cr(VI) removal from wastewater using PPY-PANI@RHA as adsorbent was macroscopically investigated via the estimation of three thermodynamic functions.

3.
Macromol Rapid Commun ; : e2400449, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264537

ABSTRACT

Surface covalent modification of black phosphorus (BP) with organic polymers represents a promising strategy to enhance its stability and tailor its electronic properties. Despite this potential, developing memristive materials through suitable polymer structures, grafting pathways, and polymerization techniques remains challenging. In this study, polyaniline (PANI)-covalently grafted black phosphorus nanosheets (BPNS) are successfully prepared with redox functionalities via the in situ polymerization of aniline on the surface of 4-aminobenzene-modified BPNS. The PANI coating protects the BP from direct exposure to oxygen and water, and it endows the material with analog memristive properties, characterized by a continuously adjustable resistance within a limited voltage scan range. When subjected to a broader voltage scan, the Al/PANI-g-BPNS/ITO device demonstrates a typical bistable digital memristive behavior. The integration of both digital and analog memristive functionalities in a single device paves the way for the development of high-density, multifunctional electronic components.

4.
Environ Monit Assess ; 196(10): 923, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259367

ABSTRACT

Two polyurethane polyaniline nanocomposites have been synthesized using two in situ polymerization routes of dried and wet bases to valorize the polyurethane waste. The physical and chemical properties of polyurethane-based nanocomposites were compared using SEM, XRD, FTIR, and Zeta potential. SEM images showed that the average particle size of the dried-based composite was 56 nm, while the wet-based composite had an average size of 75 nm. The separation efficiency for methylene blue (MB) and Congo red (CR) dyes was evaluated against free polyurethane foam waste. It was evident that pure polyurethane (PPU) achieved only 4.79% and 16.71% removal for MB and CR, respectively. These dye decontamination efficiencies were enhanced after nano polyaniline decoration of polyurethane foam either through dried base polymerization (DPUP) or wet base polymerization (WPUP). WPUP composite records 11.23% and 85.99% for MB and CR removal, respectively, improved to 26.69% and 90.07% removal using DPUP composite for the respective dyes. The adsorption kinetics, isotherms, and thermodynamics were investigated. The experimental results revealed the pseudo-second-order kinetic model as the most accurately described kinetics model for both CR and MB adsorption. The Langmuir model provided the best fit for the data, with maximum adsorption capacities of 110.98 mg/g for CR and 26.86 mg/g for MB, with corresponding R-squared values of 0.9974 and 0.9608, respectively. Regeneration and reusability studies of PPU, WPUP, and DPUP showed effective reusability, with DPUP displaying the highest adsorption capacity. These results aid in creating eco-friendly and cost-efficient adsorbents for dye removal in environmental sanitation.


Subject(s)
Aniline Compounds , Coloring Agents , Nanocomposites , Polyurethanes , Water Pollutants, Chemical , Polyurethanes/chemistry , Aniline Compounds/chemistry , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry , Adsorption , Methylene Blue/chemistry , Waste Disposal, Fluid/methods , Decontamination/methods , Kinetics , Congo Red/chemistry
5.
Macromol Rapid Commun ; : e2400574, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254511

ABSTRACT

Promoting charge storage and fast charging capability simultaneously is a long-standing challenge for supercapacitors. A facile flowing seed polymerization is adopted to prepare polyaniline (PANI) nanofibers, in which phytic acid (PA) doped oligomers are first produced as the seeds for promoting the highly oriented growth of PANI nanofibers accompanying with the copolymerization of m-aminobenzene sulfonic acid (ASA) and aniline occurred on the surface of PANI nanofibers, as a result, unique core-shell structured PANI nanofibers are continuously fabricated. Benefitting from compact nanofiber structure, excellent dispersion, and self-doping effect, as-prepared PANI nanofibers exhibit a specific capacitance of 671.2 F g-1 at 2 A g-1 and ultrahigh rate capability of 93.1% from 2 to 100 A g-1. Then assembled all-solid-state supercapacitor can deliver the highest energy density of 28.3 Wh kg-1 at a power density of 320.2 W kg-1 with remarkable rate capability (81.2% from 1 to 20 A g-1), cycle stability (77.5% after 5000 cycles) as well as light weight and flexibility. It is highly desirable that the present green and scalable approach can be further applied to fabricate other unique core-shell structured PANI nanofibers with appealing potentials in energy storage devices.

6.
J Colloid Interface Sci ; 678(Pt B): 40-49, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39236353

ABSTRACT

Redox-active lignin rich in phenolic hydroxyl groups is an ingenious charge storage material. However, its insulating nature limits the storage/release of electrons and requires the construction of electron transfer channels within it. Herein, nanoparticles (PANI/DKL-NPs) are prepared by co-assembly via π-π interactions between conducting polyaniline (PANI) and demethylated Kraft lignin (DKL) molecules for the first time, and rapid electron transfer inside DKL is achieved. The co-assembled PANI/DKL-NPs consist of interpenetrating structures of PANI and DKL at the molecular scale, and the content of PANI molecules interspersed within them is controllable. Meanwhile, the extensive and abundant mesoporous structure in nanoscale PANI/DKL-NPs facilitates ion transport and electron storage. Based on this favorable microstructure, the specific capacitance of PANI/DKL-NPs at 1 A·g-1 is as high as 532 F·g-1, which is 780 % and 90.68 % higher compared to DKL-NPs and PANI-NPs, respectively. Meanwhile, the rate performance of PANI/DKL-NPs is significantly enhanced than that of DKL-NPs (33.11 %) and comparable to that of PANI-NPs (more than 69 %). Furthermore, the symmetric supercapacitor (PANI/DKL-NPs//PANI/DKL-NPs) assembled from it achieves a high energy density of 27.49 Wh·kg-1 at 400 W·kg-1 power density, and superb flexibility and mechanical stability. Therefore, the co-assembly of DKL and PANI will effectively stimulate the energy storage potential of lignin, providing a practical pathway to promote the development of biopolymers in energy storage.

7.
Int J Biol Macromol ; 279(Pt 2): 135312, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236960

ABSTRACT

Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices. With a specific capacitance of 300Fg-1, the MC/PANI_B3 composite-based device retained 87.01 % capacitance after 2000 cycles. Besides, based on electrical energy as the sensing parameter, the composite exhibited augmented cathodic and anodic current sensitivity of 8.77 mJmA-1 and -8.86 mJmA-1, respectively. The ameliorated supercapacitor and current sensing parameters of MC/PANI_B3 are ascribed to the percolation threshold content of the conducting phase, which is endowed with optimal hydrogen bond-mediated interactions with methylcellulose (MC), thus confers an expanded chain conformation.

8.
Int J Biol Macromol ; 279(Pt 3): 135305, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236961

ABSTRACT

The polyaniline/cross-linked collagen sponge (PANI/CCS) was synthesized by polymerizing PANI onto the collagen skeleton using mesoscopic collagen fibrils (CFs) as building blocks, serving as a piezoresistive sensing material. The structure and morphology of PANI/CCS were characterized using scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TA). The mechanical properties of PANI/CCS could be controlled by adjusting the CFs content and polymerization conditions. PANI/CCS treated with pure water exhibited exceptional compressive elasticity under 1000 compression cycles, demonstrating a wide strain range (0-85 %), rapid response time (200 ms), recovery time (90 ms), and high sensitivity (6.72 at 40-50 % strain). The treatment of the ionic liquid further improved the elasticity and the strain sensing range (0-95 %). The presence of PANI nanoparticles and mesoscopic collagen fibrils imparted antibacterial properties, stability in solvents, and biodegradability to PANI/CCS. Utilizing PANI/CCS as a piezoresistive sensing material enabled monitoring human movement behavior through the assembled sensor, showing significant potential for flexible wearable devices.

9.
Sci Rep ; 14(1): 21116, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256397

ABSTRACT

Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.

10.
Chemosphere ; 364: 143114, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39154772

ABSTRACT

Yearly reports of detrimental effects resulting from harmful algal blooms (HAB) are still received in Malaysia and other countries, particularly concerning fish mortality and seafood contamination, both of which bear consequences for the fisheries industry. The underlying reason is the absence of a dependable early warning system. Hence, this research aims to develop a single DNA biosensor that can detect a group of HAB species known for producing saxitoxin (SXT), which is commonly found in Malaysian waters. The screen-printed carbon electrode (SPCE)-based DNA biosensor was fabricated by covalent grafting of the 3' aminated DNA probe of the sxtA4 conserved domain in SXT-producing dinoflagellates on the reverse-phase polymerized polyaniline/graphene (PGN) nanocomposite electrode via carbodiimide linkage. The introduction of a carboxyphenyl layer to the PGN nanotransducing element was essential to augment the carboxylic groups on the graphene (RGO), facilitating attachment with the aminated DNA. The synergistic effect of the asynthesized nanocomposite of PANI and RGO, tremendously enhanced the electron transfer rate of the ferri/ferrocyanide redox probe at the SPCE transducer surface, allowing for the label-free bioanalytical assay of complementary DNA targets. The developed DNA biosensor featuring the capacity to detect a broad range of Alexandrium minutum (A. minutum) cell concentrations, ranging from 10 to 10,000,000 cells L-1. The quantification of A. minutum cells from pure algal culture by the electrochemical DNA biosensor has been well-validated with traditional microscopic techniques. Furthermore, Alexandrium tamiyavanichii, another toxigenic HAB species, exhibited a similar electrochemical characteristic signal to those observed with A. minutum, whilst the biosensor yielded appreciably distinctive results when subjected to a non-toxigenic microalgae species as a negative control, i.e. Isochrysis galbana. A compendium DNA biosensor design and electrochemical detection strategy at laboratory scale serves as a precursor to the potential development of portable device for on-site detection, thus expanding the utility and scope of biosensor technology.


Subject(s)
Aniline Compounds , Biosensing Techniques , Dinoflagellida , Graphite , Harmful Algal Bloom , Nanocomposites , Saxitoxin , Graphite/chemistry , Nanocomposites/chemistry , Biosensing Techniques/methods , Aniline Compounds/chemistry , Saxitoxin/analysis , DNA , Electrochemical Techniques/methods , Electrodes
11.
Chemistry ; : e202403011, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206678

ABSTRACT

A bio-inspired FeFe hydrogenase model which catalyses hydrogen evolution reaction (HER) in acidic solutions is immobilized in polyaniline (PANI)-based nanotubes. A combination of analytical techniques reveals that this construct maintains both the molecular signatures of the bio-inspired complex and the material properties of PANI. The amine and imine-rich environment of the PANI chain amplifies the inherent HER activity of the bio-inspired complex, allowing electrocatalytic HER at neutral pH, with lower overpotentials and higher current densities compared to the bio-inspired complex alone. This construct retains the oxygen stability of the bio-inspired complex and remains stable through several hours of aerobic electrolysis, producing only 6.5% H2O2 from the competing oxygen reduction reaction (ORR).

12.
ACS Sens ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206707

ABSTRACT

Molecularly imprinted polymers (MIPs) are synthetic receptors made by template-assisted synthesis. MIPs might be ideal receptors for sensing devices, given the possibility to custom-design selectivity and affinity toward a targeted analyte and their robustness and ability to withstand harsh conditions. However, the synthesis of MIP is an inherently random process that produces a statistical distribution of binding sites, characterized by a variety of affinities. This is verified both for bulk MIP materials and for MIP's thin layers. In the present work, we aimed at assessing the effects of inhomogeneous versus homogeneous imprinted binding sites on electrochemical sensing measurements, and the possible implications on the sensor's performance. In the example of an Electrochemical Impedance Spectroscopy (EIS) sensor for the 17ß-estradiol (E2) hormone, the scenario of inhomogeneous binding sites was studied by modifying electrodes with an E2-MIP polyaniline (PANI) thin layer, called the "Imprinted PANI layer". In contrast, the condition of discrete and uniform binding sites was epitomized by electrodes modified with a thin PANI layer purposedly doped with E2-MIP nanoparticles (nanoMIPs), which were referred to as "nanoMIP-doped PANI". The behaviors of the two EIS sensors were compared. Interestingly, the sensitivity of the nanoMIP-doped PANI was almost twice with respect to that of the imprinted PANI layer, strongly suggesting that the homogeneity of the binding sites has a fundamental role in the sensor's development. The nanoMIP-doped PANI sensor, which showed a response for E2 in the range 36.7 pM-36.7 nM and had a limit of detection of 2.86 pg/mL, was used to determine E2 in wastewater.

13.
Heliyon ; 10(15): e34801, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170534

ABSTRACT

PANI/Fe-doped CeO 2 nanocomposite was synthesised by the in-situ process. The produced powders were characterised by XRD, XPS, FT-IR, Raman, HRTEM and SEM-EDS tests. The sensors' function was based on PANI/Fe-doped CeO 2 nanocomposite with thin film deposited on top of interdigitated electrodes (IDT). NH 3 detection with PANI/Fe-doped CeO 2 nanocomposite sensor could be successfully performed even at room temperature (RT) and relative humidity of 45 %. Results demonstrated that PANI/Fe-doped CeO 2 might be promising sensing materials for detecting the low NH 3 concentration (ppm). In addition, the sensor is selective to the interfering gases, including CO, CO 2 and NO 2 . This sensor displays acceptable repeatability and stability over time.

14.
Heliyon ; 10(15): e35204, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170547

ABSTRACT

The presence of chromium [Cr(VI)] and lead [Pb(II)] ions in the water bodies have adverse effects on humans and aquatic life. Graphene oxide-based magnetic nanocomposites synthesized in the presence of chitosan (mGO/CS) or polyaniline (mGO/PA) as potential adsorbents for the removal of Cr(VI) and Pb(II) ions. The FTIR (Fourier transform infrared spectroscopy), EDX (Energy dispersive X-ray), XRD (X-ray diffraction) and SEM (Scanning electron microscopy) were employed to investigate the chemical composition, structural, elemental analysis, crystalline size and morphology of the nanocomposites. The FTIR results confirmed the synthesis of the nanocomposites by detecting peaks of specific functional groups. The average crystallite sizes of the mGO, mGO/CS, and mGO/PA nanocomposites were 17, 25, and 23 (nm), respectively, as determined by the Debye-Scherrer equation from the XRD data. Batch adsorption experiments were conducted for Pb(II) and Cr(VI) removal by varying the variables like pH, concentration of metal ions and contact time. The Box Behnken design (BBD) was used to optimize the adsorption parameters. Under the optimum conditions, mGO/CS and mGO/PA showed maximum removal percentages (%R) of 92.36 and 98.7 for Pb(II), and 85.25 and 93.08 for Cr(VI), respectively. The adsorption capacities were 110.84 and 118.44 mg/g for Pb(II), and 87.74 and 111.7 mg/g for Cr(VI) were obtained for mGO/CS and mGO/PA, respectively. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the experimental data and explain the adsorption mechanism of the nanocomposite materials for both metal ions.

15.
Mikrochim Acta ; 191(9): 507, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39098931

ABSTRACT

An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 µM, a broad linear range of 0.01 to 69.8 µM, a high sensitivity of 5.09 µA/µM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.


Subject(s)
Aniline Compounds , Anthraquinones , Carbon , Ciprofloxacin , Electrochemical Techniques , Electrodes , Graphite , Limit of Detection , Milk , Graphite/chemistry , Milk/chemistry , Aniline Compounds/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Animals , Ciprofloxacin/analysis , Carbon/chemistry , Anthraquinones/chemistry , Reproducibility of Results , Food Contamination/analysis , Anti-Bacterial Agents/analysis
16.
J Environ Manage ; 368: 122068, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39116819

ABSTRACT

Efficient filtering of dyes is essential for the protection of ecosystem and human health due to the considerable water pollution caused by the effluents released from the sector. We present a simple, scalable UV radiation-assisted method for treating methyl orange dye-polluted water from the textile industry using zirconium phosphate-loaded polyaniline-graphene oxide (PGZrP) composite. The new material was synthesized by sonochemically incorporating a polyaniline-graphene oxide composite with hydrothermally synthesized zirconium phosphate. The efficacy of PGZrP in eliminating methyl orange was evaluated using experimental conditions, and the adsorption capacity was investigated as a function of pH, temperature, adsorbent dosage, and adsorption period. The system follows Langmuir adsorption isotherm with pseudo-second-order kinetics. Thermodynamics studies showed that enthalpy (H°) and entropy (S°) values are positive, indicating that the dye adsorption increases with increasing temperature and is an endothermic reaction. The maximum adsorption capacity was found to be 36.45379 mg/g for methyl orange. Using the COMSOL Multiphysics CFD Platform, an attempt was made to check the temperature and concentration profile of a PGZrP composite in a real industrial system. The predicted result shows that there is no significant temperature change in the material during the adsorption process and the concentration of dye is mainly located on the top region of the bed. The developed zirconium phosphate decorated polyaniline-graphene oxide composite can be successfully utilized for the effective removal of methyl orange from industrial wastewater in bulk quantity which is coming from the textile industry, and the composite can be reused for several cycles with good efficiency. In this work, we have designed a miniaturized proof of concept to remove methyl orange from water which showed good dye removal efficiency.


Subject(s)
Aniline Compounds , Coloring Agents , Graphite , Zirconium , Graphite/chemistry , Zirconium/chemistry , Aniline Compounds/chemistry , Adsorption , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Textiles , Kinetics , Azo Compounds/chemistry , Thermodynamics , Textile Industry
17.
Article in English | MEDLINE | ID: mdl-39113217

ABSTRACT

In this study, a new amperometric biosensor was developed for glucose determination. For this purpose, polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film was prepared by electropolymerization of aniline and pyrrole with poly(sodium-4-styrenesulfonate) on a platinum plate. The best working conditions of the polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film were determined. The glucose oxidase enzyme was immobilized by the entrapment method in polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Glucose determination was made based on the oxidation of hydrogen peroxide, which is formed as a result of the enzymatic reaction on the surface of the prepared biosensor at +0.40 V. The working range for the glucose determination of the biosensor was determined. The effects of pH and temperature on the response of the glucose biosensor were investigated. The reusability and shelf life of the biosensor were determined. The effects of interference in biological environments on the response of the biosensor were investigated. Glucose determination was made in the biological fluid (blood) with the prepared biosensor. This study has a feature that sheds light on biosensor studies to be developed for the detection of substances in the human body, such as glucose, uric acid, and urea. This article will set an example for future scientific research on the development of a sensor for other biological fluids in the human body, such as the sensor developed for blood samples. In addition, this developed sensor provides an innovation that improves the quality of life of patients by allowing them to constantly monitor their glucose levels and intervene when necessary.

18.
Front Chem ; 12: 1412242, 2024.
Article in English | MEDLINE | ID: mdl-39119518

ABSTRACT

Known for its tunable conductivity and stability, Polyaniline (PANI) is a valuable polymer for electronics and sensing devices. Challenges in solubility have been addressed by creating sulfonated PANI (SPANI), enhancing its practical use. Synthesizing SPANI from sulfonated aniline is intricate, but laccase biocatalysis offers an eco-conscious solution, effective even against high redox potential obstacles. This research monitored the Trametes versicolor laccase-induced oxidation of 3-ABSa via UV-vis spectroscopy, with a notable peak at 565 nm signifying SPANI synthesis, effective even at suboptimal pH. Mediators further boost this process. Moreover, NMR and spectroelectrochemistry confirm the green synthesis of SPANI by laccase, hinting that pH fine-tuning could improve yields, alongside the concurrent creation of azobenzene derivatives.

19.
ChemSusChem ; : e202401363, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180463

ABSTRACT

The efficiency of photoelectrocatalysis is fundamentally dependent on the sufficient absorption of light and efficient utilisation of photogenerated carriers, but is largely limited by the reactivity from the inefficient charge transfer and surface sites of the catalyst. In this study, π-π stacking of polar small molecules on aromatic ring-rich polyaniline (PANI) was carried out to improve its photoelectrocatalytic splitting of water for hydrogen production. Detailed photoelectrochemical experiments and density-functional theory (DFT) calculations show that small molecules of p-aminobenzoic acid (PABA) and PANI have the best π-π stacking (compared to p-toluenesulfonic acid (PTA)), which promotes the separation of carriers on the PANI surface. In addition, the polar effect of the small molecules also improves the reactivity of the PANI surface and also reduces the potential barrier for H2 evolution. The current density of PANI-PABA reached -0.12 mA/cm2 (1.23 V vs. RHE) 2.53 times higher than that of pure PANI in linear voltammetric scanning tests under light. This strategy of introducing polar small molecules into organocatalysts via π-π stacking will provide new ideas for the preparation of efficient organic photoelectrocatalysis.

20.
J Hazard Mater ; 478: 135449, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39137546

ABSTRACT

Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.


Subject(s)
Anti-Bacterial Agents , Charcoal , Seaweed , Sulfamethoxazole , Water Pollutants, Chemical , Charcoal/chemistry , Anti-Bacterial Agents/chemistry , Sulfamethoxazole/chemistry , Water Pollutants, Chemical/chemistry , Seaweed/chemistry , Seaweed/metabolism , Aniline Compounds/chemistry , Catalysis , Peroxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL