Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(14): 5464-5493, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31090163

ABSTRACT

This Review deals with the evolving field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides). In addition to a historical outline, current progress in synthetic approaches towards the formation of polyfluorides, polychlorides, polybromides, and polyinterhalides is also illustrated. The structural diversity of polyhalides has substantially increased in the past decade, especially for polychlorides and polybromides, which are commonly characterized by single-crystal X-ray diffraction, Raman spectroscopy, and quantum-chemical calculations. Polyfluorides have been examined by sophisticated state-of-the-art quantum-chemical calculations and investigated spectroscopically in noble gas matrix-isolation experiments under cryogenic conditions at 4 K. The bonding in such polyhalide systems is also discussed. The last Section deals with applications of polyhalides in halogenation reactions and electrochemistry as well as their use as reactive ionic liquids, emphasizing the promising future of polyhalogen chemistry.

2.
Angew Chem Int Ed Engl ; 58(30): 10340-10344, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31050139

ABSTRACT

Pseudohalogens are defined as molecular entities that resemble the halogens in their chemistry. While our understanding of polyhalogen chemistry has increased over the last years, research on polypseudohalogen compounds is lacking. The pseudohalogen BrCN possesses a highly pronounced σ-hole at the bromine side of the molecule, inducing strong halogen bonding. This allows the synthesis and characterization of new polypseudohalogen anions, as shown by the single-crystal X-ray diffraction of [PNP][Br(BrCN)] and [PNP][Br(BrCN)3 ]. Both the nearly linear anion [Br(BrCN)]- and the distorted pyramidal anion [Br(BrCN)3 ]- were characterized by Raman spectroscopy and quantum-chemical calculations. The behavior of the polypseudohalogen compounds in solution and as room-temperature ionic liquids (RT-ILs) using the [NBu4 ]+ cation was studied by 13 C and 15 N NMR spectroscopy. These types of ILs are capable of dissolving elemental gold and offer themselves as promising compounds in metal recycling.

SELECTION OF CITATIONS
SEARCH DETAIL