Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 10: e14170, 2022.
Article in English | MEDLINE | ID: mdl-36217383

ABSTRACT

Background: Cover crops and mulching can ameliorate soil porosity and nutrient availability, but their effects on the physical characteristics and nutrients in the raised bed soils are unclear. Methods: The field experiment was conducted in a pomelo orchard from 2019 to 2021, with an area of 1,500 m2. The treatments included control (no cover crop), non-legume cover crop (Commelina communis L.), legume cover crop (Arachis pintoi Krabov & W.C. Gregory), and rice straw mulching (Oryza sativa L.). At the end of each year (2019, 2020, and 2021), soil samples were collected at four different layers (0-10, 10-20, 20-30, and 30-40 cm) in each treatment. Soil bulk density, soil porosity, and the concentration of nutrients in the soil were investigated. Results: The results revealed that soil bulk density at two depths, 0-10 and 10-20 cm, was reduced by 0.07 and 0.08 g cm-3 by rice straw mulch and a leguminous cover crop, thus, increasing soil porosity by ~2.74% and ~3.01%, respectively. Soil nutrients (Ca, K, Fe, and Zn) at topsoil (0-10 cm) and subsoil (10-20 cm) layers were not significantly different in the first year, but those nutrients (Ca, K, Fe, and Zn) improved greatly in the second and third years. Conclusions: Legume cover crops and straw mulch enhanced soil porosity and plant nutrient availability (Ca, K, Fe, and Zn). These conservation practices best benefit fruit orchards cultivated in the raised bed soils.


Subject(s)
Citrus , Oryza , Soil , Agriculture/methods , Fruit , Crops, Agricultural , Vegetables
2.
Front Microbiol ; 13: 980241, 2022.
Article in English | MEDLINE | ID: mdl-35992706

ABSTRACT

Fertilizer management can influence soil microbes, soil properties, enzymatic activities, abundance and community structure. However, information on the effects of biochar in combination with organic-inorganic fertilizer after 3 years under pomelo orchard on soil bacterial abundance, soil properties and enzyme activities are not clear. Therefore, we conducted a field experiment with seven treatments, i.e., (1) Ck (control), (2) T1 (2 kg biochar plant-1), (3) T2 (4 kg biochar plant-1), (4) T3 (2 kg organic-inorganic mixed fertilizer plant-1), (5) T4 (4 kg biochar + 1.7 kg organic-inorganic mixed fertilizer plant-1), (6) T5 (4 kg biochar + 1.4 kg organic-inorganic mixed fertilizer plant-1), and (7) T6 (4 kg biochar + 1.1 kg organic-inorganic mixed fertilizer plant-1). The soil microbial communities were characterized using high-throughput sequencing of 16S and internal transcribed spacer (ITS) ribosomal RNA gene amplicons. The results showed that biochar combined with organic-organic fertilizer significantly improved soil properties (pH, alkali hydrolysable nitrogen, available phosphorus, available potassium, and available magnesium) and soil enzymatic activities [urease, dehydrogenase (DHO), invertase and nitrate reductase (NR) activities]. Furthermore, soil bacterial relative abundance was higher in biochar and organic-inorganic treatments as compared to control plots and the most abundant phyla were Acidobacteria (40%), Proteobacteria (21%), Chloroflexi (17%), Planctomycetes (8%), Bacteroidetes (4%), Verrucomicrobia (2%), and Gemmatimonadetes (1%) among others. Among the treatments, Acidothermus, Acidibacter, Candidatus Solibacter and F473 bacterial genera were highest in combined biochar and organic-inorganic treatments. The lowest bacterial abundance and bacterial compositions were recorded in control plots. The correlation analysis showed that soil attributes, including soil enzymes, were positively correlated with Chloroflexi, Planctomycetes, verrucomicrobia, GAL15 and WPS-2 bacterial abundance. This study demonstrated that biochar with organic-inorganic fertilizer improves soil nutrients, enzymatic activities and bacterial abundance.

3.
Front Microbiol ; 13: 958788, 2022.
Article in English | MEDLINE | ID: mdl-35935198

ABSTRACT

Rhizosphere soil microbial communities substantially impact plant growth by regulating the nutrient cycle. However, dynamic changes in soil microbiota under different tree ages have received little attention. In this study, changes in soil physicochemical properties, as well as bacterial diversity and community structures (by high-throughput Illumina MiSeq sequencing), were explored in pomelo trees of different ages (i.e., 10, 20, and 30 years) under red and paddy soils cultivated by farmers with high fertilizer input. Moreover, soil factors that shape the bacterial community, such as soil pH, AP (available phosphorous), AK (available potassium), and AN (available nitrogen), were also investigated. Results showed that pH significantly decreased, while AP, AK, and AN increased with increasing tree age under red soil. For paddy soil, pH was not changed, while AP was significantly lower under 10-year-old pomelo trees, and AK and AN contents were minimum under 30-year-old pomelo trees. Both soil types were dominated by Proteobacteria, Acidobacteria, and Actinobacteria and showed contrasting patterns of relative abundance under different tree age groups. Bacterial richness and diversity decreased with increasing tree age in both soil types. Overall, bacterial community composition was different under different tree ages. RDA analysis showed that soil pH, AP, and AN in red soil, and pH and AP in paddy soil showed the most significant effects in changing the bacterial community structure. A random forest model showed Sinomonas and Streptacidiphilus in red soil, while Actinoallomurus and Microbacterium in paddy soil were the most important genera explaining the differences among different age groups. The ternary plot further revealed that genera enrichment for Age_30 was higher than that for Age_10 and Age_20 in red soil, whereas specific genera enrichment decreased with increasing tree age under paddy soil. Co-occurrence network revealed that bacterial species formed a complex network structure with increasing tree age, indicating a more stable microbial association under 20 and 30 years than 10-year-old pomelo trees. Hence, contrasting patterns of changes in soil physicochemical properties and soil microbial communities were recorded under different tree ages, and tree ages significantly affected the bacterial community structure and richness. These findings provide valuable information regarding the importance of microbes for the sustainable management of pomelo orchards by optimizing fertilizer input for different ages of trees.

4.
J Sci Food Agric ; 102(6): 2613-2622, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34687234

ABSTRACT

BACKGROUND: Soil quality assessment is a critical strategy for determining optimum fertilization in intensive pomelo production. In this study, we evaluated the soil quality status and mapped the spatial distribution of 347 soil samples collected from pomelo orchards in Pinghe County, southern China. We analyzed nine chemical parameters and an altitude indicator. RESULTS: The mean soil quality index (SQI) was 0.355 in the total data set (TDS) and 0.292 in the minimum data set (MDS). Available Ca (Avail-Ca), pH value, organic matter and altitude were selected as indicators of soil quality in the MDS. The SQI in mature orchards (>10 years) was higher than that in young orchards (<10 years), while no differences between soil types and altitude gradients were identified. We detected a significant positive correlation between the SQI based on TDS (SQITDS ) and the SQI based on MDS (SQIMDS ), and the spatial distribution of soil properties and SQITDS showed a uniform pattern, except for Avail-N, Avail-B and SQIMDS . Overall, unfavorable soil quality indicators, including rich in Avail-P, deficient in Avail-Ca, -Mg and -B, soil acidification and high altitude, were considered to be limiting factors for pomelo production. CONCLUSION: The soil chemical quality in pomelo orchards is generally low, indicating that integrated management by controlling acidification, reducing planting altitude, regulating fertilization and monitoring soil properties is required for sustainable pomelo production. © 2021 Society of Chemical Industry.


Subject(s)
Fruit , Soil , China , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL