Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.842
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1159-1165, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977346

ABSTRACT

OBJECTIVE: To investigate the effect of Porphyromonas gingivalis (Pg) infection on immune escape of oesophageal cancer cells and the role of YTHDF2 and Fas in this regulatory mechanism. METHODS: We examined YTHDF2 and Fas protein expressions in esophageal squamous cell carcinoma (ESCC) tissues with and without Pg infection using immunohistochemistry and in Pg-infected KYSE150 cells using Western blotting. The interaction between YTHDF2 and Fas was investigated by co-immunoprecipitation (Co-IP). Pg-infected KYSE150 cells with lentivirus-mediated YTHDF2 knockdown were examined for changes in expression levels of YTHDF2, cathepsin B (CTSB), Fas and FasL proteins, and the effect of E64 (a cathepsin inhibitor) on these proteins were observed. After Pg infection and E64 treatment, KYSE150 cells were co-cultured with human peripheral blood mononuclear cells (PBMCs), and the expressions of T cell-related effector molecules were detected by flow cytometry. RESULTS: ESCC tissues and cells with Pg infection showed significantly increased YTHDF2 expression and lowered Fas expression. The results of Co-IP demonstrated a direct interaction between YTHDF2 and Fas. In Pg-infected KYSE150 cells with YTHDF2 knockdown, the expression of CTSB was significantly reduced while Fas and FasL expressions were significantly increased. E64 treatment of KYSE150 cells significantly decreased the expression of CTSB without affecting YTHDF2 expression and obviously increased Fas and FasL expressions. Flow cytometry showed that in Pg-infected KYSE150 cells co-cultured with PBMCs, the expressions of Granzyme B and Ki67 were significantly decreased while PD-1 expression was significantly enhanced. CONCLUSION: Pg infection YTHDF2-dependently regulates the expression of Fas to facilitate immune escape of esophageal cancer and thus promoting cancer progression, suggesting the key role of YTHDF2 in regulating immune escape of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Porphyromonas gingivalis , RNA-Binding Proteins , fas Receptor , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Cell Line, Tumor , fas Receptor/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Fas Ligand Protein/metabolism , Tumor Escape
2.
J Periodontol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963713

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is characterized by rapid renal decline. Periodontitis, a chronic oral inflammatory disease, is increasingly associated with renal dysfunction. Although periodontitis is recognized as a contributor to kidney damage, the mechanisms linking it to AKI remain unclear. METHODS: This study explored the effects of Porphyromonas gingivalis (P. gingivalis) W83-infected periodontitis on AKI in C57BL/6J mice, using ischemia-reperfusion injury 55 days post-infection. Gingipain inhibitors, KYT-1 and KYT-36, were applied. Detection of P. gingivalis was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and PCR, while transcriptome sequencing, qRT-PCR, immunohistochemistry, and immunofluorescence staining assessed renal damage. In vitro, HK-2 cells were exposed to P. gingivalis at a multiplicity of infection of 10 for 48 h, with inhibition by gingipain or oncostatin M (OSM). Disruption of tight junctions (TJs) was quantified using qRT-PCR, transepithelial electrical resistance, and cell counting kit-8 assays. RESULTS: Periodontitis worsened AKI, linked to P. gingivalis infection and renal TJ disruption in the kidney. P. gingivalis infection activated OSM expression, which correlated positively with gingipain. Significantly, OSM and gingipain might collaboratively contribute to the damage of renal TJs, with the reduced expression of TJ proteins. Suppressing gingipain activity presented itself as a protective strategy against the destruction of TJs and the attendant worsening of AKI due to periodontitis. CONCLUSIONS: Our study enhances the understanding of the interplay between periodontitis and AKI, highlighting the harmful impact of P. gingivalis in AKI.

3.
J Oral Microbiol ; 16(1): 2373040, 2024.
Article in English | MEDLINE | ID: mdl-38974504

ABSTRACT

Background: Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against Porphyromonas gingivalis using metabolome analysis. Materials and Methods: P. gingivalis were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides. Results: The relative amounts of various glycogenic amino acids were significantly decreased when P. gingivalis was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of P. gingivalis and activities of the DPPs. Conclusions: Curcumin suppresses the growth of P. gingivalis by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.

4.
Odontology ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995322

ABSTRACT

The roles and molecular mechanisms of Delta-like 1 (DLK1) in periodontitis remain largely unknown. Here, we investigated the expression of DLK1 and NF-κB p65 in Porphyromonas gingivalis (Pg.)-induced periodontitis in vivo. Periodontal inflammation and alveolar bone resorption were analyzed using western blotting, micro-computed tomography, TRAP staining, immunohistochemistry, and immunofluorescence. Raw246.7 cells were stimulated with 1 µg/ml Porphyromonas gingivalis lipopolysaccharide (Pg.LPS) to assess DLK1 expression in vitro. DLK1 overexpression was achieved, and transfection efficiency was confirmed using western blotting and immunofluorescence. The NF-κB and MAPK pathways were activated by treating cells with 1 µg/ml Pg.LPS to explore related mechanisms. Compared with normal tissues, both DLK1 and NF-κB p65 expression increased in periodontitis gingival tissues. DLK1-positive expression was observed in inflammatory infiltrating cells and osteoclasts in the marginal lacunae of the alveolar bone. DLK1 expression in CD68-positive macrophages was detected by immunofluorescence. However, DLK1 expression in Raw246.7 cells decreased after Pg.LPS stimulation and during osteoclast differentiation. DLK1 levels negatively correlated with TNF-α, IL-1ß, and NFATC1. Increased DLK1 in Raw246.7 cells further inhibited COX2 and iNOS expressions. Mechanistically, DLK1 overexpression down-regulated NF-κB p65 and JNK levels. In summary, these findings suggest that DLK1 overexpression inhibits periodontal inflammation through the NF-κB p65 and JNK pathways. Interventions targeting increased DLK1 levels may have therapeutic implications for periodontitis.

5.
J Oral Microbiol ; 16(1): 2376462, 2024.
Article in English | MEDLINE | ID: mdl-38988325

ABSTRACT

Background: Gingipains are important virulence factors present in Porphyromonas gingivalis. Arginine-specific gingipains (RgpA and RgpB) are critically associated with increased proteolytic activity and immune system dysfunction, including neutrophilic activity. In this study, we assessed the impact of gingipains (RgpA and RgpB) on neutrophil function. Methods: Peripheral blood samples were obtained; neutrophils were isolated and incubated with P. gingivalis A7436, W50, and the double RgpA/RgpB double knockout mutant E8 at MOI 20 for 2 hours. Neutrophil viability was assessed by Sytox staining. Phagocytic capacity and apoptosis were measured by flow cytometry. Superoxide release was measured by superoxide dismutase and cytochrome c reduction assay. Gene expression of TLR2, p47-phox, p67-phox, and P2 × 7was measured by qPCR. Inflammatory cytokine and chemokine production was measured by IL-1ß, IL-8, RANTES, and TNF-α in cell supernatants. Results: Neutrophil TLR2 gene expression was reduced in the absence of RgpA/RgpB (p < 0.05), while superoxide production was not significantly impacted. RgpA/RgpB-/- significantly impaired neutrophil phagocytic function (p < 0.05) and increased TNF-α production when compared with the wild-type control (p < 0.05). Neutrophil apoptosis was not altered when exposed to RgpA/RgpB-/- E8 (p > 0.05). Conclusion: These data suggest that arginine-specific gingipains (RgpA/RgpB) can modulate neutrophil responses against P. gingivalis infection.


P. gingivalis-derived arginine-specific gingipains impaired the phagocytic and apoptotic function in neutrophils.

6.
J Indian Soc Periodontol ; 28(1): 122-128, 2024.
Article in English | MEDLINE | ID: mdl-38988957

ABSTRACT

Background: Periodontitis is a multifactorial, polymicrobial oral inflammatory illness brought on by oral pathogens. Porphyromonas gingivalis is a Gram-negative, obligatory anaerobic, black-pigmented coccobacillus and is regarded as a primary etiological factor in the progression of periodontitis. Rapid, highly senstitive and specific detection methods are emerging. The present study aimed to evaluate the loop-mediated isothermal amplification (LAMP) technique for efficiently detecting P. gingivalis from subgingival plaque samples of chronic periodontitis patients. Materials and Methods: This study included 50 subgingival plaque samples from patients suffering from chronic periodontitis. The DNA (Deoxyribonucleic acid) was extracted by the "modified proteinase K" method. A set of six primers, targeting the pepO gene of P. gingivalis, was used for conducting LAMP. The amplification was visualized by naked-eye detection and agarose electrophoresis. Conventional polymerase chain reaction (PCR) and real-time qantitative PCR (qPCR) were carried out by targeting the 16SrRNA (16S ribosomal ribonucleic acid) gene of P. gingivalis. Results: The results showed that LAMP detected P. gingivalis in 40 out of 50 samples (80%). Whereas, qPCR and conventional PCR technique detected P. gingivalis in 38 (76%) and 33 (66%) samples respectively. The sensitivity and specificity of the LAMP method were 94.87% and 90.90%, respectively. With qPCR, the sensitivity and specificity were found to be 92.30% and 81.81%, respectively, whereas, with conventional PCR, it was found to be 76.92% and 72.72%, respectively. Conclusion: LAMP is an efficient technique for quick, accurate, and reliable identification of P. gingivalis from subgingival plaque samples. The technique needs to be validated analytically, and further studies can be conducted by taking saliva and/or gingival crevicular fluid samples from periodontitis patients.

7.
Fitoterapia ; : 106120, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992475

ABSTRACT

Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 µg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 µM), samarangenin B (71%, 20 µM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 µM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 µg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 µg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89 µg/mL, EAF 14.15 µg/mL and FLB7 6 µg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF and FLB7 significantly inhibited biofilm formation: IC50 11.34 µg/mL (AQF), 11.66 µg/mL (EAF), 12.09 µg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.

8.
Front Oral Health ; 5: 1430886, 2024.
Article in English | MEDLINE | ID: mdl-38948089

ABSTRACT

There are well established epidemiological links between rheumatoid arthritis and periodontitis. Recent data have started to shed light on the mechanisms that might underlie the relationship between these two complex diseases. Unravelling the roles of distinct pathways involved in these mechanisms has the potential to yield novel preventative and therapeutic strategies for both diseases. Perhaps most intriguingly, this represents an area where understanding the biology in the oral cavity might reveal fundamental advances in understanding immune regulation and the relationships between the host and microbiome. Here we seek to discuss aspects of the adaptive immune response that might link periodontitis and rheumatoid arthritis.

9.
Inflammation ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961014

ABSTRACT

Porphyromonas gingivalis (P. gingivalis) is one of the major pathogens causing periodontitis and apical periodontitis (AP). Long noncoding RNA (lncRNA) can regulate cellular mineralization and inflammatory diseases. The aim of this study was to investigate the role and mechanism of lncRNA in P. gingivalis-stimulated cementoblast mineralization. In vivo, C57BL/6 mice were divided into the healthy, the AP, and AP + P. gingivalis groups (n = six mice per group). Micro computed tomography, immunohistochemistry staining, and fluorescence in situ hybridization were used to observe periapical tissue. In vitro, cementoblasts were treated with osteogenic medium or P. gingivalis. Pluripotency associated transcript 3 (Platr3), interleukin 1 beta (IL1B), and osteogenic markers were analyzed by quantitative real-time polymerase chain reaction and western blot. RNA pull-down and RNA immunoprecipitation assays were used to detect proteins that bind to Platr3. RNA sequencing was performed in Platr3-silenced cementoblasts. In vivo, P. gingivalis promoted periapical tissue destruction and IL1B expression, but inhibited Platr3 expression. In vitro, P. gingivalis facilitated IL1B expression (P < 0.001), whereas suppressed the expression of Platr3 (P < 0.001) and osteogenic markers (P < 0.01 or 0.001). In contrast, Platr3 overexpression alleviated the repressive effect of P. gingivalis on cementoblast mineralization (P < 0.01 or 0.001). Furthermore, Platr3 bound to nudix hydrolase 21 (NUDT21) and regulated the nuclear factor-κB (NF-κB) signaling pathway. Knocking down NUDT21 suppressed osteogenic marker expression and activated the above signaling pathway. Collectively, the results elucidated that Platr3 mediated P. gingivalis-suppressed cementoblast mineralization through the NF-κB signaling pathway by binding to NUDT21.

10.
J Periodontal Res ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962877

ABSTRACT

AIM: Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS: Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS: Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS: Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.

11.
Sci Rep ; 14(1): 13969, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886503

ABSTRACT

Periodontitis is a chronic inflammatory disease that affects the periodontal tissues. Although it is associated with various systemic diseases, the impact of periodontitis on kidney transplantation (KT) outcomes, particularly allograft rejection, remains unclear. This study investigated the effect of periodontitis on transplant immunity, specifically examining Porphyromonas gingivalis-derived lipopolysaccharide (LPS-PG). In vitro experiments revealed that LPS-PG increased regulatory T cells (Tregs) in Lewis rat spleen cells. In a mixed lymphocyte reaction assay, concentrations of interferon-γ, indicative of alloreactivity, were lower than in controls when LPS-PG was added to the culture and when LPS-PG-administered Lewis rat spleen cells were used as responders. In a rat KT model, LPS-PG administration to recipients promoted mild tubulitis and low serum creatinine and blood urea nitrogen levels 5 days post-KT compared with PBS-administered controls. Furthermore, LPS-PG-administered recipients had an elevated Treg proportion in their peripheral blood and spleen cells, and increased infiltrating Tregs in kidney allografts, compared with controls. The elevated Treg proportion in peripheral blood and spleen cells had a significant negative correlation with serum creatinine, suggesting elevated Tregs modulated allograft rejection. These findings suggest that periodontitis might modulate alloimmune reactivity through LPS-PG and Tregs, offering insights to refine immunosuppressive strategies for KT recipients.


Subject(s)
Graft Rejection , Kidney Transplantation , Lipopolysaccharides , Porphyromonas gingivalis , Rats, Inbred Lew , T-Lymphocytes, Regulatory , Animals , Porphyromonas gingivalis/immunology , Kidney Transplantation/adverse effects , Rats , T-Lymphocytes, Regulatory/immunology , Male , Graft Rejection/immunology , Allografts , Periodontitis/immunology , Periodontitis/microbiology , Disease Models, Animal , Spleen/immunology
12.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article in English | MEDLINE | ID: mdl-38836053

ABSTRACT

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
13.
J Oral Microbiol ; 16(1): 2361403, 2024.
Article in English | MEDLINE | ID: mdl-38847000

ABSTRACT

Objectives: This research first investigated the effect of mesoporous silica nanoparticles (nMS) carrying chlorhexidine and silver (nMS-nAg-Chx) on periodontitis-related biofilms. This study aimed to investigate (1) the antibacterial activity on Porphyromonas gingivalis (P. gingivalis) biofilm; (2) the suppressing effect on virulence of P. gingivalis biofilm; (3) the regulating effect on periodontitis-related multispecies biofilm. Methods: Silver nanoparticles (nAg) and chlorhexidine (Chx) were co-loaded into nMS to form nMS-nAg-Chx. Inhibitory zone test and minimum inhibitory concentration (MIC) against P. gingivalis were tested. Growth curves, crystal violet (CV) staining, live/dead staining and scanning electron microscopy (SEM) observation were performed. Biofilm virulence was assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and Quantitative Real Time-PCR (qPCR) were performed to validate the activity and composition changes of multispecies biofilm (P. gingivalis, Streptococcus gordonii and Streptococcus sanguinis). Results: nMS-nAg-Chx inhibited P. gingivalis biofilm dose-dependently (p<0.05), with MIC of 18.75 µg/mL. There were fewer live bacteria, less biomass and less virulence in nMS-nAg-Chx groups (p<0.05). nMS-nAg-Chx inhibited and modified periodontitis-related biofilms. The proportion of pathogenic bacteria decreased from 16.08 to 1.07% and that of helpful bacteria increased from 82.65 to 94.31% in 25 µg/mL nMS-nAg-Chx group for 72 h. Conclusions: nMS-nAg-Chx inhibited P. gingivalis growth, decreased biofilm virulence and modulated periodontitis-related multispecies biofilms toward healthy tendency. pH-sensitive nMS-nAg-Chx inhibit the pathogens and regulate oral microecology, showing great potential in periodontitis adjunctive therapy.

14.
Carbohydr Res ; 541: 109172, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823062

ABSTRACT

Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.


Subject(s)
Alzheimer Disease , Colorectal Neoplasms , N-Acetylneuraminic Acid , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , N-Acetylneuraminic Acid/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Mouth/microbiology , Bacteria/metabolism , Bacteria/pathogenicity , Fusobacterium nucleatum/metabolism , Fusobacterium nucleatum/pathogenicity , Animals
15.
Heliyon ; 10(11): e31872, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38919974

ABSTRACT

Periodontal disease is highly prevalent in both humans and dogs. Although there have been reports of cross-infection of periodontopathic bacteria, methods for assessing it have yet to be established. The actual status of cross-infection remains to be seen. The purpose of this study was to evaluate the utility of bacterial DNA and serum immunoglobulin G (IgG) antibody titer assays to assess infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs. Four experimental beagles were used for establishing methods. Sixty-six companion dogs at veterinary clinics visiting for treatment and prophylaxis of periodontal disease were used and divided into healthy, gingivitis, and periodontitis groups. Periodontal pathogens such as Porphyromonas gingivalis and Porphyromonas gulae were investigated as target bacteria. DNA levels of both bacteria were measured using species-specific primers designed for real-time polymerase chain reaction (PCR). Serum IgG titers of both bacteria were measured by enzyme-linked immunosorbent assay (ELISA). PCR primers were confirmed to have high sensitivity and specificity. However, there was no relationship between the amount of bacterial DNA and the severity of the periodontal disease. In addition, dogs with periodontitis had higher IgG titers against both bacteria compared to dogs in the healthy and gingivitis groups; there was cross-reactivity between the two bacteria. Receiver operating characteristic (ROC) analysis of IgG titers against both bacteria showed high sensitivity (>90 %) and specificity (>75 %). Since both bacteria were distinguished by DNA assays, the combination of these assays may be useful in the evaluation of cross-infection.

16.
BMC Oral Health ; 24(1): 668, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849764

ABSTRACT

BACKGROUND: Crohn's disease (CD)-associated periodontitis is common. However, the role of periodontal pathogens in the Coexistence of CD and periodontal disease remains unclear. METHODS: To investigate the potential relationship mediated by periodontal pathogens between periodontitis and CD, we collected salivary samples from healthy participants (H group, n = 12), patients with CD (Ch group, n = 10), patients with periodontitis (Ps group, n = 12), and patients with Coexistence of CD and periodontal disease (Cp group, n = 12) and analyzed them by 16 S rRNA sequencing. RESULTS: Patients with Coexistence of CD and periodontal disease had increased levels of Fusobacterium, Actinomyces, Leptotrichia, and Prevotella, which correlated with the severity of periodontitis. Conversely, the levels of Streptococcus, Neisseria, Haemophilus, and Gemella, which decreased in Coexistence of CD and periodontal disease, were negatively correlated with the severity of periodontitis. To further investigate the role of periodontal pathogens in CD development, representative periodontal pathogens causing periodontitis, Porphyromonas gingivalis and Fusobacterium nucleatum, were administered to mice. These pathogens migrate to, and colonize, the gut, accelerating CD progression and aggravating colitis, and even systemic inflammation. In vitro experiments using a Caco-2/periodontal pathogen coculture revealed that P. gingivalis and F. nucleatum increased intestinal permeability by directly disrupting the tight junctions of intestinal epithelial cells. CONCLUSION: Our findings strongly suggest that periodontal pathogens play a role in the relationship between periodontitis and CD. These results provide a basis for understanding the pathogenesis of Coexistence of CD and periodontal disease and may lead to the development of novel therapeutic strategies.


Subject(s)
Crohn Disease , Fusobacterium nucleatum , Periodontitis , Porphyromonas gingivalis , Humans , Crohn Disease/microbiology , Crohn Disease/complications , Periodontitis/microbiology , Periodontitis/complications , Animals , Mice , Male , Female , Adult , Fusobacterium nucleatum/isolation & purification , Caco-2 Cells , Saliva/microbiology , RNA, Ribosomal, 16S
17.
Forensic Sci Int ; 361: 112112, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917506

ABSTRACT

Body fluid detection is an important component in the toolbox of forensic scientists, with saliva playing a particularly critical role in forensic evidence. Given that each body fluid possesses a distinct microbiome, the identification of body fluid based on specific representatives of the microbiota presents an appealing approach for forensic applications. In this study, we have developed a real-time polymerase chain reaction (RT-PCR)-based method for the precise identification of saliva, focusing on three bacteria highly associated with saliva but not with other tested body fluids -Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus salivarius. The inclusion of these three bacterial species enhances the accuracy of detection and reinforces validation. Notably, specific identification of saliva was achievable even at low concentrations where Phadebas, a commonly used method for saliva detection, proved ineffective. Importantly, bacteria-based saliva detection utilizes DNA generated for small tandem repeats (STR) profiling, facilitating seamless integration into forensic laboratories and optimizing DNA sample utilization. This study collectively proposes an effective bacterial DNA-based approach for saliva identification, demonstrating promising potential for forensic applications.

18.
Brain Sci ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38928550

ABSTRACT

Invasive dental procedures, such as wisdom teeth removal, have been identified as potential triggers for vascular events due to the entry of oral bacteria into the bloodstream, leading to acute vascular inflammation and endothelial dysfunction. This study presents the case of a 27-year-old healthy male who developed ischemic stroke resulting from bacteremia after undergoing wisdom teeth extraction. Initially, the patient experienced fever and malaise, which were followed by right-sided hemiplegia. Diagnostic imaging, including a CT scan, identified a subacute infarction in the posterior crus of the left internal capsule, and MRI findings indicated inflammatory changes in the masticatory muscles. Further investigations involving biopsies of the masticatory muscles, along with blood and cerebrospinal fluid samples, confirmed bacterial meningitis with associated vasculitis. Notably, oral bacteria linked to periodontitis, including Porphyromonas gingivalis, Fusobacterium nucleatum, Tannerella forsythia, and Parvimonas micra, were found in the biopsies and microbiological analyses. To the best of our knowledge, this is the first reported case showing that bacteremia following dental procedures can lead to such severe neurological outcomes. This case underscores the importance of recognizing bacteremia-induced vasculitis in patients presenting with neurological symptoms post-dental procedures, emphasizing the broader implications of oral infections in such pathologies.

19.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928857

ABSTRACT

Periodontal disease is an inflammatory disease caused by infection with periodontopathogenic bacteria. Oral care is essential to prevent and control periodontal disease, which affects oral and systemic health. However, many oral hygiene products currently on the market were developed as disinfectants, and their intense irritation makes their use difficult for young children and older people. This study investigated the antibacterial effects of prunin laurate (Pru-C12) and its analogs on periodontopathogenic bacteria, Porphyromonas gingivalis (P. gingivalis). Pru-C12 and its analogs inhibited in vitro bacterial growth at more than 10 µM and biofilm formation at 50 µM. Among its analogs, only Pru-C12 showed no cytotoxicity at 100 µM. Three of the most potent inhibitors also inhibited the formation of biofilms. Furthermore, Pru-C12 inhibited alveolar bone resorption in a mouse experimental periodontitis model by P. gingivalis infection. These findings may be helpful in the development of oral hygiene products for the prevention and control of periodontal disease and related disorders.

20.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892314

ABSTRACT

GV1001, an anticancer vaccine, exhibits other biological functions, including anti-inflammatory and antioxidant activity. It also suppresses the development of ligature-induced periodontitis in mice. Porphyromonas gingivalis (Pg), a major human oral bacterium implicated in the development of periodontitis, is associated with various systemic disorders, such as atherosclerosis and Alzheimer's disease (AD). This study aimed to explore the protective effects of GV1001 against Pg-induced periodontal disease, atherosclerosis, and AD-like conditions in Apolipoprotein (ApoE)-deficient mice. GV1001 effectively mitigated the development of Pg-induced periodontal disease, atherosclerosis, and AD-like conditions by counteracting Pg-induced local and systemic inflammation, partly by inhibiting the accumulation of Pg DNA aggregates, Pg lipopolysaccharides (LPS), and gingipains in the gingival tissue, arterial wall, and brain. GV1001 attenuated the development of atherosclerosis by inhibiting vascular inflammation, lipid deposition in the arterial wall, endothelial to mesenchymal cell transition (EndMT), the expression of Cluster of Differentiation 47 (CD47) from arterial smooth muscle cells, and the formation of foam cells in mice with Pg-induced periodontal disease. GV1001 also suppressed the accumulation of AD biomarkers in the brains of mice with periodontal disease. Overall, these findings suggest that GV1001 holds promise as a preventive agent in the development of atherosclerosis and AD-like conditions associated with periodontal disease.


Subject(s)
Apolipoproteins E , Atherosclerosis , Periodontal Diseases , Porphyromonas gingivalis , Animals , Mice , Apolipoproteins E/deficiency , Periodontal Diseases/microbiology , Periodontal Diseases/prevention & control , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/microbiology , Telomerase/metabolism , Peptide Fragments/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/prevention & control , Alzheimer Disease/microbiology , Periodontitis/microbiology , Periodontitis/prevention & control , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/complications , Bacteroidaceae Infections/prevention & control , Disease Models, Animal , Mice, Inbred C57BL , Male , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...