Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Microbiology (Reading) ; 169(8)2023 08.
Article in English | MEDLINE | ID: mdl-37552221

ABSTRACT

Bacteria live in complex polymicrobial communities and are constantly competing for resources. The type VI secretion system (T6SS) is a widespread antagonistic mechanism used by Gram-negative bacteria to gain an advantage over competitors. T6SSs translocate toxic effector proteins inside target prokaryotic cells in a contact-dependent manner. In addition, some T6SS effectors can be secreted extracellularly and contribute to the scavenging scarce metal ions. Bacteria deploy their T6SSs in different situations, categorizing these systems into offensive, defensive and exploitative. The great variety of bacterial species and environments occupied by such species reflect the complexity of regulatory signals and networks that control the expression and activation of the T6SSs. Such regulation is tightly controlled at the transcriptional, posttranscriptional and posttranslational level by abiotic (e.g. pH, iron) or biotic (e.g. quorum-sensing) cues. In this review, we provide an update on the current knowledge about the regulatory networks that modulate the expression and activity of T6SSs across several species, focusing on systems used for interbacterial competition.


Subject(s)
Type VI Secretion Systems , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/genetics , Bacteria/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Quorum Sensing/genetics
2.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194935, 2023 06.
Article in English | MEDLINE | ID: mdl-37011833

ABSTRACT

Trichomonas vaginalis TvCP2 (TVAG_057000) is a cytotoxic cysteine proteinase (CP) expressed under iron-limited conditions. This work aimed to identify one of the mechanisms of tvcp2 gene expression regulation by iron at the posttranscriptional level. We checked tvcp2 mRNA stability under both iron-restricted (IR) and high iron (HI) conditions in the presence of actinomycin D. Greater stability of the tvcp2 mRNA under the IR than in HI conditions was observed, as expected. In silico analysis of the 3' regulatory region showed the presence of two putative polyadenylation signals in the tvcp2 transcript. By 3'-RACE assays, we demonstrated the existence of two isoforms of the tvcp2 mRNA with different 3'-UTR that resulted in more TvCP2 protein under IR than in HI conditions detected by WB assays. Additionally, we searched for homologs of the trichomonad polyadenylation machinery by an in silico analysis in the genome database, TrichDB. 16 genes that encode proteins that could be part of the trichomonad polyadenylation machinery were found. qRT-PCR assays showed that most of these genes were positively regulated by iron. Thus, our results show the presence of alternative polyadenylation as a novel iron posttranscriptional regulatory mechanism in T. vaginalis for the tvcp2 gene expression.


Subject(s)
Cysteine Proteases , Trichomonas vaginalis , Trichomonas vaginalis/genetics , Trichomonas vaginalis/metabolism , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Iron/metabolism , Polyadenylation , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Plant Cell Physiol ; 63(11): 1709-1719, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36066193

ABSTRACT

Circadian rhythms enable organisms to anticipate and adjust their physiology to periodic environmental changes. These rhythms are controlled by biological clocks that consist of a set of clock genes that regulate each other's expression. Circadian oscillations in messenger RNA (mRNA) levels require the regulation of mRNA production and degradation. While transcription factors controlling clock function have been well characterized from cyanobacteria to humans, the role of factors controlling mRNA decay is largely unknown. Here, we show that mutations in SM-LIKE PROTEIN 1 (LSM1) and exoribonucleases 4 (XRN4), components of the 5'-3' mRNA decay pathway, alter clock function in Arabidopsis. We found that lsm1 and xrn4 mutants display long-period phenotypes for clock gene expression. In xrn4, these circadian defects were associated with changes in circadian phases of expression, but not overall mRNA levels, of several core-clock genes. We then used noninvasive transcriptome-wide mRNA stability analysis to identify genes and pathways regulated by XRN4. Among genes affected in the xrn4 mutant at the transcriptional and posttranscriptional level, we found an enrichment in genes involved in auxin, ethylene and drought recovery. Large effects were not observed for canonical core-clock genes, although the mRNAs of several auxiliary clock genes that control the pace of the clock were stabilized in xrn4 mutants. Our results establish that the 5'-3' mRNA decay pathway constitutes a novel posttranscriptional regulatory layer of the circadian gene network, which probably acts through a combination of small effects on mRNA stability of several auxiliary and some core-clock genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Plant , Circadian Clocks/genetics , RNA Stability/genetics
4.
Front Genet ; 13: 871972, 2022.
Article in English | MEDLINE | ID: mdl-35774498

ABSTRACT

HLA-G is a nonclassical histocompatibility class I molecule that plays a role in immune vigilance in cancer and infectious diseases. We previously reported that highly soluble HLA-G (sHLA-G) levels in the bone marrow were associated with a high blood cell count in T-acute lymphoblastic leukemia, a marker associated with a poor prognosis. To understand the posttranscriptional HLA-G gene regulation in leukemia, we evaluated the bone marrow microRNA profile associated with the HLA-G bone marrow mRNA expression and sHLA-G bone marrow levels in children exhibiting acute leukemia (B-ALL, T-ALL, and AML) using massively parallel sequencing. Ten differentially expressed miRNAs were associated with high sHLA-G bone marrow levels, and four of them (hsa-miR-4516, hsa-miR-486-5p, hsa-miR-4488, and hsa-miR-5096) targeted HLA-G, acting at distinct HLA-G gene segments. For qPCR validation, these miRNA expression levels (ΔCt) were correlated with HLA-G5 and RREB1 mRNA expressions and sHLA-G bone marrow levels according to the leukemia subtype. The hsa-miR-4488 and hsa-miR-5096 expression levels were lower in B-ALL than in AML, while that of hsa-miR-486-5p was lower in T-ALL than in AML. In T-ALL, hsa-miR-5096 correlated positively with HLA-G5 and negatively with sHLA-G. In addition, hsa-miR-4516 correlated negatively with sHLA-G levels. In AML, hsa-miR-4516 and hsa-miR-4488 correlated positively with HLA-G5 mRNA, but the HLA-G5 negatively correlated with sHLA-G. Our findings highlight the need to validate the findings of massively parallel sequencing since the experiment generally uses few individuals, and the same type of leukemia can be molecularly quite variable. We showed that miRNA's milieu in leukemia's bone marrow environment varies according to the type of leukemia and that the regulation of sHLA-G expression exerted by the same miRNA may act by a distinct mechanism in different types of leukemia.

5.
Endocrine ; 59(1): 191-202, 2018 01.
Article in English | MEDLINE | ID: mdl-29210006

ABSTRACT

Hypothyroidism and thyrotoxicosis produce adverse effects in male reproduction by unknown mechanisms. We investigated whether triiodothyronine (T3) modulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) synthesis/secretion, by inducing different thyroid states. In hypothyroidism, the content of Lhb and Fshb mRNAs was increased, while their association to ribosomes and the protein content were reduced and the serum LH and FSH concentrations were augmented and decreased, respectively. Thyrotoxicosis reduced Lhb mRNA and LH serum concentration, and increased Lhb mRNA translational rate. The Fshb mRNA content and its association to ribosomes were also increased, whereas FSH serum concentrations were comparable to euthyroid levels. Acute T3 treatment decreased the total content of Lhb and Fshb mRNAs, and increased their association to ribosomes, as well as the LHB and FSHB contents in secretory granules. This study shows that T3 acts on gonadotrophs, resulting in direct effects on LH and FSH synthesis/secretion of male rats, suggesting that some reproductive disorders observed in men may be associated with thyroid hormone imbalances.


Subject(s)
Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/metabolism , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Triiodothyronine/pharmacology , Animals , Gene Expression/drug effects , Hypothyroidism/genetics , Hypothyroidism/metabolism , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Thyroidectomy
6.
J Allergy Clin Immunol ; 137(5): 1423-32, 2016 05.
Article in English | MEDLINE | ID: mdl-27025347

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are emerging as important regulatory molecules that might be involved in the pathogenesis of various diseases. Circulating miRNAs might be noninvasive biomarkers to diagnose and characterize asthma and allergic rhinitis (AR). OBJECTIVE: We sought to determine whether miRNAs are differentially expressed in the blood of asthmatic patients compared with those in the blood of nonasthmatic patients with AR and nonallergic nonasthmatic subjects. Furthermore, we sought to establish whether miRNAs could be used to characterize or subtype asthmatic patients. METHODS: Expression of plasma miRNAs was measured by using real-time quantitative PCR in 35 asthmatic patients, 25 nonasthmatic patients with AR, and 19 nonallergic nonasthmatic subjects. Differentially expressed miRNAs were identified by using Kruskal-Wallis 1-way ANOVA with Bonferroni P value adjustment to correct for multiple comparisons. A random forest classification algorithm combined with a leave-one-out cross-validation approach was implemented to assess the predictive capacities of the profiled miRNAs. RESULTS: We identified 30 miRNAs that were differentially expressed among healthy, allergic, and asthmatic subjects. These miRNAs fit into 5 different expression pattern groups. Among asthmatic patients, miRNA expression profiles identified 2 subtypes that differed by high or low peripheral eosinophil levels. Circulating miR-125b, miR-16, miR-299-5p, miR-126, miR-206, and miR-133b levels were most predictive of allergic and asthmatic status. CONCLUSIONS: Subsets of circulating miRNAs are uniquely expressed in patients with AR and asthmatic patients and have potential for use as noninvasive biomarkers to diagnose and characterize these diseases.


Subject(s)
Asthma/genetics , MicroRNAs/blood , Rhinitis, Allergic/genetics , Adult , Asthma/blood , Biomarkers/blood , Female , Humans , Male , Middle Aged , Rhinitis, Allergic/blood
7.
Biomolecules ; 5(4): 3354-95, 2015 11 26.
Article in English | MEDLINE | ID: mdl-26703754

ABSTRACT

Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.


Subject(s)
Iron/metabolism , Protozoan Proteins/metabolism , RNA-Binding Proteins/metabolism , Trichomonas Infections/parasitology , Trichomonas vaginalis/metabolism , Animals , Humans , Protein Processing, Post-Translational , Protozoan Proteins/genetics , RNA-Binding Proteins/genetics , Response Elements , Trichomonas Infections/metabolism , Trichomonas vaginalis/genetics
8.
Vitam Horm ; 98: 1-31, 2015.
Article in English | MEDLINE | ID: mdl-25817864

ABSTRACT

Thyroid hormones are critical for the normal development, growth, and functional maturation of several tissues, including the central nervous system. Iodine is an essential constituent of the thyroid hormones, the only iodine-containing molecules in vertebrates. Dietary iodide (I(-)) absorption in the gastrointestinal tract is the first step in I(-) metabolism, as the diet is the only source of I(-) for land-dwelling vertebrates. The Na(+)/I(-) symporter (NIS), an integral plasma membrane glycoprotein located in the brush border of enterocytes, constitutes a central component of the I(-) absorption system in the small intestine. In this chapter, we review the most recent research on structure/function relations in NIS and the protein's I(-) transport mechanism and stoichiometry, with a special focus on the tissue distribution and hormonal regulation of NIS, as well as the role of NIS in mediating I(-) homeostasis. We further discuss recent findings concerning the autoregulatory effect of I(-) on I(-) metabolism in enterocytes: high intracellular I(-) concentrations in enterocytes decrease NIS-mediated uptake of I(-) through a complex array of posttranscriptional mechanisms, e.g., downregulation of NIS expression at the plasma membrane, increased NIS protein degradation, and reduction of NIS mRNA stability leading to decreased NIS mRNA levels. Since the molecular identification of NIS, great progress has been made not only in understanding the role of NIS in I(-) homeostasis but also in developing protocols for NIS-mediated imaging and treatment of various diseases.


Subject(s)
Diet , Gastrointestinal Absorption/physiology , Homeostasis/physiology , Iodides/metabolism , Symporters/metabolism , Down-Regulation , Enterocytes/metabolism , Gene Expression Regulation/physiology , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Iodides/administration & dosage , RNA, Messenger/metabolism , Symporters/genetics , Thyroid Gland/metabolism , Thyroid Hormones/metabolism
9.
Plant Sci ; 225: 24-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25017156

ABSTRACT

Endomembrane protein trafficking assures protein location through the endocytic and secretory routes. Trafficking pathways are diverse, depending on the proteins being trafficked, the final destination as well as their itinerary. Trafficking pathways are operated by machineries composed of a set of coordinately acting factors that transport proteins between compartments. Different machineries participate in each protein trafficking pathway, providing specificity and accuracy. Changes in the activity and abundance of trafficking proteins regulate protein flux. The preponderance of one pathway over another regulates protein location and relocation. Cellular requirements change during different processes and in response to stimuli; modulation of trafficking mechanisms must relocate proteins or alternatively increase/decrease the targeting rate of certain proteins. Conventionally, protein trafficking modulation has been explained as posttranslational modification of components of the relevant trafficking machinery. However, trafficking components are also transcriptionally regulated and several reports support that this regulation can modulate protein trafficking as well. This transcriptional modulation has an impact on plant physiology, and is a critical and fundamental mechanism. This scenario suggests a determinant mechanism that must be considered in the endomembrane protein trafficking research field.


Subject(s)
Gene Expression Regulation, Plant , Intracellular Membranes/metabolism , Plant Proteins/genetics , Plants/genetics , Protein Processing, Post-Translational , Protein Transport/genetics , Transcription, Genetic , Plant Proteins/metabolism , Plants/metabolism
10.
Int J Cancer ; 135(9): 2065-76, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24643999

ABSTRACT

MicroRNAs (miRNAs) are post-transcriptional gene regulators involved in a wide range of biological processes including tumorigenesis. Deregulation of miRNA pathways has been associated with cancer but the contribution of their genetic variability to this disorder is poorly known. We analyzed the genetic association of gastric cancer (GC) and its anatomical and histological subtypes, with 133 single-nucleotide polymorphisms (SNPs) tagging 15 isolated miRNAs and 24 miRNA clusters potentially involved in cancer, in 365 GC cases and 1,284 matched controls within the European Prospective Investigation into Cancer and Nutrition cohort. Various SNPs were associated with GC under the log-additive model. Furthermore, several of these miRNAs passed the gene-based permutation test when analyzed according to GC subtypes: three tagSNPs of the miR-29a/miR-29b-1 cluster were associated with diffuse subtype (minimum p-value = 1.7 × 10(-4) ; odds ratio, OR = 1.72; 95% confidence interval, CI = 1.30-2.28), two tagSNPs of the miR-25/miR-93/miR-106b cluster were associated with cardia GC (minimum p-value = 5.38 × 10(-3) ; OR = 0.56, 95% CI = 0.37-0.86) and one tagSNP of the miR-363/miR-92a-2/miR-19b-2/miR-20b/miR-18b/miR-106a cluster was associated with noncardia GC (minimum p-value = 5.40 × 10(-3) ; OR = 1.41, 95% CI = 1.12-1.78). Some functionally validated target genes of these miRNAs are implicated in cancer-related processes such as methylation (DNMT3A, DNMT3B), cell cycle (E2F1, CDKN1A, CDKN1C), apoptosis (BCL2L11, MCL1), angiogenesis (VEGFA) and progression (PIK3R1, MYCN). Furthermore, we identified genetic interactions between variants tagging these miRNAs and variants in their validated target genes. Deregulation of the expression of these miRNAs in GC also supports our findings, altogether suggesting for the fist time that genetic variation in MIR29, MIR25, MIR93 and MIR106b may have a critical role in genetic susceptibility to GC and could contribute to the molecular mechanisms of gastric carcinogenesis.


Subject(s)
Adenocarcinoma/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , Stomach Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Case-Control Studies , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, X/genetics , Female , Follow-Up Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Staging , Prognosis , Prospective Studies , White People
SELECTION OF CITATIONS
SEARCH DETAIL