Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.311
Filter
1.
Antibodies (Basel) ; 13(3)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39189241

ABSTRACT

The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval. The bioavailability of IgG was predicted to be 70%, which mechanistically relates to macropinocytosis in the draining lymph nodes and transient local dose-dependent partial saturation of the FcRn receptor in the APCs, resulting in higher catabolism and consequently less drug reaching the systemic circulation. The predicted free FcRn concentration was reduced to 40-45%, reaching the minimum 1-2 days after the SC administration of IgG, and returned to baseline after 8-12 days, depending on the site of injection. The model predicted the uptake into APCs, the binding affinity to FcRn, and the dose to be important factors impacting the bioavailability of a mAb.

2.
J Cancer Res Clin Oncol ; 150(8): 390, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154308

ABSTRACT

OBJECTIVES: Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS: Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS: In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION: Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.


Subject(s)
Apoptosis , Artemisinins , Cell Movement , Cisplatin , Disease Progression , Leukoplakia, Oral , Mouth Neoplasms , Artemisinins/pharmacology , Animals , Leukoplakia, Oral/pathology , Leukoplakia, Oral/drug therapy , Humans , Cisplatin/pharmacology , Mice , Mouth Neoplasms/pathology , Mouth Neoplasms/drug therapy , Apoptosis/drug effects , Cell Movement/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , HMGB1 Protein/metabolism , Antineoplastic Agents/pharmacology
3.
Biomol Ther (Seoul) ; 32(5): 556-567, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39091181

ABSTRACT

ß-glucan, a polysaccharide found in various sources, exhibits unique physicochemical properties, yet its high polymerization limits clinical applications because of its solubility. Addressing this limitation, we introduce PPTEE-glycan, a highly purified soluble ß-1,3/1,6-glucan derived from Aureobasidium pullulans. The refined PPTEE-glycan demonstrated robust immune stimulation in vitro, activated dendritic cells, and enhanced co-stimulatory markers, cytokines, and cross-presentation. Formulated as a PPTEE + microemulsion (ME), it elevated immune responses in vivo, promoting antigen-specific antibodies and CD8+ T cell proliferation. Intratumoral administration of PPTEE + ME in tumor-bearing mice induced notable tumor regression, which was linked to the activation of immunosuppressive cells. This study highlights the potential of high-purity Aureobasidium pullulans-derived ß-glucan, particularly PPTEE, as promising immune adjuvants, offering novel avenues for advancing cancer immunotherapy.

4.
Front Immunol ; 15: 1440667, 2024.
Article in English | MEDLINE | ID: mdl-39176090

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.


Subject(s)
Antigen-Presenting Cells , Antigens, Viral , B-Lymphocytes , Extracellular Vesicles , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Extracellular Vesicles/immunology , B-Lymphocytes/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, Viral/immunology , Viral Vaccines/immunology , Viral Proteins/immunology , Lymphocyte Activation/immunology , Dendritic Cells/immunology , Antigen Presentation/immunology
5.
Pathol Res Pract ; 262: 155534, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39180801

ABSTRACT

T cells are essential to the immune system's reaction. The major job of the immune system is to identify and get rid of any abnormal or malignant cells in the body. White blood cells called T cells coordinate and carry out immunological responses, including identifying and eliminating cancer cells. It mostly consists of two types called helper T-cells and cytotoxic T-cells. Together, they create an efficient reaction against cancer. Both the primary T cell subtype - CD4+ and CD8+ Tcells have specific role to play in our immune system.CD4+ T cells are limited to MHC-II molecules and acts as helper cell by activating and enhancing other immune cells. On the other side CD8+ T cells are called the killer cells as they eradicate the abnormal and contaminated cells and are limited to MHC-I molecules. The malignant cells are destroyed when cytotoxic T cells come into direct contact with them. This happens via number of processes, including TCR recognition, the release of cytotoxic chemicals, and finally the activation of the immune system. T cell receptors on the surface of cytotoxic T cells allow them to identify tumour cells and these T cells release harmful chemicals like perforins and granzymes when they connect to malignant cells. T-cells that have been stimulated release cytokines such as gamma interferon. T-cells can also acquire memory responses that improve their capacity for recognition and response. Helper T-cells contribute to the development of an immune response. It entails coordination and activation as well as the enlistment of additional immune cells, including macrophages and natural killer cells, to assist in the eradication of cancer cells. Despite the fact that the cancer frequently creates defence systems to circumvent their immune response. Together, these activities support the immune surveillance and T-cell-mediated regulation of cancer cells. Treatments like chemotherapy, radiation, and surgery are main ways to treat cancer but immunotherapy has been emerging since last few decades. These immune specific treatments have shown huge positive result. CAR T cell therapy is a promising weapon to fight again blood cancer and it works by focusing on our immune system to fight and eliminate cancer.

6.
Trends Microbiol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179422

ABSTRACT

Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.

7.
J Nanobiotechnology ; 22(1): 476, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135064

ABSTRACT

BACKGROUND: Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established. RESULTS: Here, in vivo charge-based nanoparticle (NP) uptake was compared in mice of two age groups (2- and 16-months) within the four notable pulmonary antigen presenting cell (APC) populations: alveolar macrophages (AM), interstitial macrophages (IM), CD103+ dendritic cells (DCs), and CD11b+ DCs. Both macrophage populations exhibited preferential uptake of anionic nanoparticles but showed inverse rates of phagocytosis between the AM and IM populations across age. DC populations demonstrated preferential uptake of cationic nanoparticles, which remarkably did not significantly change in the aged group. Further characterization of cell phenotypes post-NP internalization demonstrated unique surface marker expression and activation levels for each APC population, showcasing heightened DC inflammatory response to NP delivery in the aged group. CONCLUSION: The age of mice demonstrated significant preferences in the charge-based NP uptake in APCs that differed greatly between macrophages and DCs. Carefully balance of the targeting and activation of specific types of pulmonary APCs will be critical to produce efficient, age-based vaccines for the growing elderly population.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Lung , Mice, Inbred C57BL , Nanoparticles , Phagocytosis , Animals , Nanoparticles/chemistry , Mice , Lung/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Macrophages, Alveolar/metabolism , Polyethylene Glycols/chemistry , Aging , Female , Age Factors
8.
ACS Nano ; 18(32): 21554-21564, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39079006

ABSTRACT

While existing synthetic technologies for ex vivo T-cell activation face challenges like suboptimal expansion rates and low effectiveness, artificial antigen-presenting cells (aAPCs) hold great promise for enhanced T-cell based therapies. In particular, gold nanoparticles (AuNPs), known for their biocompatibility, ease of synthesis, and versatile surface chemistry, are strong candidates for use as nanoscale aAPCs. In this study, we developed spiky AuNPs with branched geometries to present activating ligands to primary human T-cells. The special structure of spiky AuNPs enhances biomolecule loading capacity and significantly improves T-cell activation through multivalent binding of costimulatory ligands and receptors. Our spiky AuNPs outperform existing systems including Dynabeads and soluble activators by promoting greater polyclonal expansion of T-cells, boosting sustained cytokine production, and generating highly functional T-cells with reduced exhaustion. In addition, spiky AuNPs effectively activate and expand CD19 CAR-T cells while demonstrating increased in vitro cytotoxicity against target cells using fewer effector cells than Dynabeads. This study underscores the potential of spiky AuNPs as a powerful tool, bringing new opportunities to adoptive cell therapy applications.


Subject(s)
Gold , Lymphocyte Activation , Metal Nanoparticles , T-Lymphocytes , Gold/chemistry , Gold/pharmacology , Humans , Metal Nanoparticles/chemistry , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects
9.
Cult Health Sex ; : 1-17, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018157

ABSTRACT

This study aimed to understand the experiences that trans, masculine presenting, non-binary and gender diverse (TMNG) people who menstruate have with period product packaging and marketing, and identified opportunities for improvement through an inclusive communication design framework. Semi-structured online interviews were conducted with nine TMNG consumers, allies and advocates. These revealed positive and negative experiences with the current design of period product packaging and marketing throughout the entire 'user journey', including purchasing, use and disposal. A thematic analysis of the interviews confirmed that problems exist with the lack of representation through imagery and language on period product packaging and marketing. The resulting three themes were engaged with to develop an inclusive communication design framework that included: the need for an improvement in the physical experience of periods; the need for improved mental health and emotional relationship to periods; and the need for the consideration of broader social issues such as sustainability and accessibility in relation to period product packaging and marketing.

10.
Front Toxicol ; 6: 1293147, 2024.
Article in English | MEDLINE | ID: mdl-39011060

ABSTRACT

With the expansion of nanomaterials (NMs) usage, concerns about their toxicity are increasing, and the wide variety of NMs makes it difficult to assess their toxicity. Therefore, the development of a high-throughput, accurate, and certified method to evaluate the immunotoxicity of NMs is required. In this study, we assessed the immunotoxicity potential of various NMs, such as nanoparticles of silver, silica, and titanium dioxide, using the human Cell Line Activation Test (h-CLAT) at the cellular level. After exposure to silver nanoparticle dispersions, the expression levels of CD86 and CD54 increased, suggesting the activation of antigen-presenting cells (APCs) by silver nanoparticles. Quantification of silver ions eluted from silver nanoparticles and the activation of APCs by silver ions suggested that it was due to the release of silver ions. Silica nanoparticles also increased the expression of CD86 and/or CD54, and their activation ability correlated with the synthesis methods and hydrodynamic diameters. The ability of titanium dioxide to activate APCs differed depending on the crystal type and hydrodynamic diameter. These results suggest a potential method to evaluate the immunotoxicity potential of various NMs based on their ability to activate APCs using human monocytic THP-1 cells. This method will be valuable in assessing the immunotoxicity potential and elucidating the immunotoxic mechanisms of NMs.

11.
Article in English | MEDLINE | ID: mdl-38971539

ABSTRACT

Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells are specialized antigen presenting cells that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The dendritic cell subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut dendritic cells or a subset of newly identified RORγt+ antigen presenting cells to induce the development of gut peripheral T regulatory cells. However, dendritic cells in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. Dendritic cells also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the dendritic cells that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in antigen presenting cells.

12.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066435

ABSTRACT

Virus-like nanoparticles (VNP) are regarded as efficient vaccination platforms and have proven to be useful for the non-anaphylactogenic delivery of allergen-specific immunotherapy in preclinical models previously. Herein, we sought to determine the mode of VNP uptake by antigen presenting cells (APC). Accordingly, we screened a collection of substances known to inhibit different uptake pathways by APC. The human leukemia monocytic cell line THP-1 and the murine dendritic cell line DC 2.4 were examined for the uptake of fluorescently labelled VNP in the presence or absence of inhibitors. The inhibitory effect of candidate substances that blocked VNP uptake in APC lines was subsequently evaluated in studies with primary APC present in splenocyte and lung cell homogenates in vitro and upon intratracheal application of VNP in vivo. The uptake of allergen-specific VNP in vitro and in vivo was mainly observed by macrophages and CD103+ dendritic cells and was sensitive to inhibitors that block macropinocytosis, such as hyperosmolarity induced by sucrose or the polyphenol compound Rottlerin at low micromolar concentrations but not by other inhibitors. Also, T-cell proliferation induced by allergen-specific VNP was significantly reduced by both substances. In contrast, substances that stimulate macropinocytosis, such as Heparin and phorbol myristate acetate (PMA), increased VNP-uptake and may, thus, help modulate allergen-specific T-cell responses. We have identified macropinocytosis as the principal uptake mechanism of APC for allergen-specific VNP in vitro and in vivo, paving the way for further improvement of VNP-based therapies, especially those that can be used for tolerance induction in allergy, in the future.

13.
Cancer Epidemiol ; 92: 102609, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991388

ABSTRACT

BACKGROUND: Despite their frequency and potential impact on prognosis, cancers diagnosed via self-referral to the emergency department are poorly documented. We conducted a detailed analysis of cancer patients diagnosed following emergency self-referral and compared them with those diagnosed following emergency referral from primary care. Given the challenges associated with measuring intervals in the emergency self-referral pathway, we also aimed to provide a definition of the diagnostic interval for these cancers. METHODS: A retrospective observational analysis was performed on patients diagnosed with 13 cancers, either following emergency self-referral or emergency referral from primary care. We analysed demographics, tumour stage, clinical data (including 28 presenting symptoms categorised by body systems), and diagnostic intervals by cancer site, then testing for differences between pathways. RESULTS: Out of 3624 patients, 37 % were diagnosed following emergency self-referral and 63 % via emergency referral from primary care. Emergency self-referrals were associated with a higher likelihood of being diagnosed with cancers manifesting with localising symptoms (e.g., breast and endometrial cancer), whereas the likelihood of being diagnosed with cancers featuring nonspecific symptoms and abdominal pain (e.g., pancreatic and ovarian cancer) was higher among patients referred from primary care. Diagnostic intervals in self-referred patients were half as long as those in patients referred from primary care, with most significant differences for pancreatic cancer (28 [95 % CI -34 to -23] days shorter, respectively). CONCLUSION: These findings enrich the best available evidence on cancer diagnosis through emergency self-referral and showed that, compared with the emergency referral pathway from primary care, these patients had a significantly increased likelihood of presenting with symptoms that are strongly predictive of cancer. Since the starting point for the diagnostic interval in these patients is their emergency presentation, comparing it with that of those referred from primary care as an emergency is likely to result in biased data.

14.
CNS Neurosci Ther ; 30(7): e14747, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973085

ABSTRACT

AIM: To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS: Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS: We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION: Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.


Subject(s)
CD8-Positive T-Lymphocytes , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , White Matter , Animals , Male , Mice , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/immunology , White Matter/pathology , White Matter/immunology , Stroke/pathology , Stroke/immunology , Microglia/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Lymphocyte Activation , Disease Models, Animal
15.
Adv Sci (Weinh) ; 11(31): e2400260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896803

ABSTRACT

Skin-resident antigen-presenting cells (APC) play an important role in maintaining peripheral tolerance via immune checkpoint proteins and induction of T regulatory cells (Tregs). However, there is a lack of knowledge on how to expand or recruit immunoregulatory cutaneous cells without causing inflammation. Here, it is shown that administration of a non-coding single-stranded oligonucleotide (ssON) leads to CCR2-dependent accumulation of CD45+CD11b+Ly6C+ cells in the skin that express substantial levels of PD-L1 and ILT3. Transcriptomic analyses of skin biopsies reveal the upregulation of key immunosuppressive genes after ssON administration. Functionally, the cutaneous CD11b+ cells inhibit Th1/2/9 responses and promote the induction of CD4+FoxP3+ T-cells. In addition, ssON treatment of imiquimod-induced inflammation results in significantly reduced Th17 responses. It is also shown that induction of IL-10 production in the presence of cutaneous CD11b+ cells isolated after ssON administrations is partly PD-L1 dependent. Altogether, an immunomodulatory ssON is identified that can be used therapeutically to recruit cutaneous CD11b+ cells with the capacity to dampen Th cells.


Subject(s)
CD11b Antigen , Skin , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Mice , Animals , CD11b Antigen/metabolism , CD11b Antigen/genetics , CD11b Antigen/immunology , Skin/immunology , Skin/metabolism , Mice, Inbred C57BL , Oligonucleotides/pharmacology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Female , Disease Models, Animal
16.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915603

ABSTRACT

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.

17.
Cancers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893085

ABSTRACT

Recent studies highlight the integral role of the interferon gamma receptor (IFNγR) pathway in T cell-mediated cytotoxicity against solid but not liquid tumors. IFNγ not only directly facilitates tumor cell death by T cells but also indirectly promotes cytotoxicity via myeloid phagocytosis in the tumor microenvironment. Meanwhile, full human ex vivo immune checkpoint drug screening remains challenging. We hypothesized that an engineered gamma interferon activation site response element luciferase reporter (GAS-Luc2) can be utilized for immune checkpoint drug screening in diverse ex vivo T cell-solid tumor cell co-culture systems. We comprehensively profiled cell surface proteins in ATCC's extensive collection of human tumor and immune cell lines, identifying those with endogenously high expression of established and novel immune checkpoint molecules and binding ligands. We then engineered three GAS-Luc2 reporter tumor cell lines expressing immune checkpoints PD-L1, CD155, or B7-H3/CD276. Luciferase expression was suppressed upon relevant immune checkpoint-ligand engagement. In the presence of an immune checkpoint inhibitor, T cells released IFNγ, activating the JAK-STAT pathway in GAS-Luc2 cells, and generating a quantifiable bioluminescent signal for inhibitor evaluation. These reporter lines also detected paracrine IFNγ signaling for immune checkpoint-targeted ADCC drug screening. Further development into an artificial antigen-presenting cell line (aAPC) significantly enhanced T cell signaling for superior performance in these ex vivo immune checkpoint drug screening platforms.

18.
Front Immunol ; 15: 1372432, 2024.
Article in English | MEDLINE | ID: mdl-38903527

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods: We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results: Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions: Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Humans , Neoplasms/immunology , Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Transcriptome
19.
HLA ; 103(6): e15541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923358

ABSTRACT

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Dendritic Cells , Epitopes, T-Lymphocyte , Immunodominant Epitopes , Humans , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Immunodominant Epitopes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Fibroblasts/immunology , Fibroblasts/virology , Antigen-Presenting Cells/immunology
20.
J Appl Behav Anal ; 57(3): 574-583, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819033

ABSTRACT

This study evaluated how speech disfluencies affect perceived speaker effectiveness. Speeches with filler sounds and filler words at different rates of disfluencies (i.e., 0, 2, 5, and 12 per minute) were created and evaluated by a crowdsourcing service for survey-based research for the speaker's public speaking performance. Increased disfluencies, particularly filler sounds, significantly affected perceptions across most categories, notably at higher rates of filler sounds (i.e., 12 per minute). A low, but nonzero, rate of disfluencies (5 per minute) did not adversely affect perceived effectiveness. These findings suggest that although reducing filler sounds is crucial for optimizing perceived speaking effectiveness, a rate of five or fewer disfluencies per minute may be acceptable.


Subject(s)
Speech , Humans , Male , Female , Speech Perception , Adult , Phonetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...