ABSTRACT
The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour. The defensive immobility and escape elicited by IC activation is commonly related to panic-like emotional states. To investigate the role of κ-opioid receptor of the IC in the antiaversive effects of endogenous opioid receptor blockade in a dangerous situation, male Wistar rats were pretreated in the IC with the κ-opioid receptor-selective antagonist nor-binaltorphimine at different concentrations and submitted to the non-enriched polygonal arena for a snake panic test in the presence of a rattlesnake and, after 24 h, prey were resubmitted to the experimental context. The snakes elicited in prey a set of antipredatory behaviours, such as the anxiety-like responses of defensive attention and risk assessment, and the panic-like reactions of defensive immobility and either escape or active avoidance during the elaboration of unconditioned and conditioned fear-related responses. Pretreatment of the IC with microinjections of nor-binaltorphimine at higher concentrations significantly decreased the frequency and duration of both anxiety- and panic-attack-like behaviours. These findings suggest that κ-opioid receptor blockade in the IC causes anxiolytic- and panicolytic-like responses in threatening conditions, and that kappa-opioid receptor-selective antagonists can be a putative coadjutant treatment for panic syndrome treatment.
ABSTRACT
BACKGROUND: The endogenous opioid peptide system has been implicated in the neural modulation of fear and anxiety organised by the dorsal midbrain. Furthermore, previous results indicate a fundamental role played by inferior colliculus (IC) opioid mechanisms during the expression of defensive behaviours, but the involvement of the IC µ1-opioid receptor in the modulation of anxiety- and panic attack-related behaviours remains unclear. Using a prey-versus-snake confrontation paradigm, we sought to investigate the effects of µ1-opioid receptor blockade in the IC on the defensive behaviour displayed by rats in a dangerous situation. METHODS: Specific pathogen-free Wistar rats were treated with microinjection of the selective µ1-opioid receptor antagonist naloxonazine into the IC at different concentrations (1.0, 3.0 and 5.0 µg/0.2 µL) and then confronted with rattlesnakes ( Crotalus durissus terrificus). The defensive behavioural repertoire, such as defensive attention, flat back approach (FBA), startle, defensive immobility, escape or active avoidance, displayed by rats either during the confrontations with wild snakes or during re-exposure to the experimental context without the predator was analysed. RESULTS: The blockade of µ1-opioid receptors in the IC decreased the expression of both anxiety-related behaviours (defensive attention, FBA) and panic attack-related responses (startle, defensive immobility and escape) during the confrontation with rattlesnakes. A significant decrease in defensive attention was also recorded during re-exposure of the prey to the experimental apparatus context without the predator. CONCLUSION: Taken together, these results suggest that a decrease in µ1-opioid receptor signalling activity within the IC modulates anxiety- and panic attack-related behaviours in dangerous environments.
Subject(s)
Anxiety/prevention & control , Behavior, Animal/drug effects , Fear , Inferior Colliculi/drug effects , Narcotic Antagonists/pharmacology , Panic Disorder/prevention & control , Receptors, Opioid, mu/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Crotalus , Disease Models, Animal , Food Chain , Naloxone/analogs & derivatives , Naloxone/pharmacology , Rats , Rats, WistarABSTRACT
BACKGROUND: There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS: Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS: Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS: The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS: These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.