Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Mol Pharm ; 21(7): 3566-3576, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38899552

ABSTRACT

Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.


Subject(s)
Antioxidants , Lithocholic Acid , Nanoparticles , Oxidative Stress , Polymers , Probucol , Reactive Oxygen Species , Probucol/pharmacology , Probucol/administration & dosage , Probucol/chemistry , Oxidative Stress/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Lithocholic Acid/chemistry , Lithocholic Acid/pharmacology , Animals , Polymers/chemistry , Cell Line , Antioxidants/pharmacology , Antioxidants/chemistry , NF-E2-Related Factor 2/metabolism , Cell Survival/drug effects , Mice , Heme Oxygenase-1/metabolism , Humans
2.
Int J Biol Macromol ; 273(Pt 1): 132740, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825267

ABSTRACT

The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.


Subject(s)
Burns, Chemical , Corneal Injuries , Dextrans , Gelatin , Hydrogels , Wound Healing , Animals , Dextrans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Gelatin/chemistry , Rats , Wound Healing/drug effects , Corneal Injuries/drug therapy , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Alkalies/chemistry , Oxidation-Reduction , Nanoparticles/chemistry , Cornea/drug effects , Cornea/metabolism , Cornea/pathology , Male , Eye Burns/drug therapy , Eye Burns/chemically induced , Eye Burns/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Injections
3.
Pharmacol Res ; : 107281, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942341

ABSTRACT

Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.

4.
Biol Pharm Bull ; 47(6): 1154-1162, 2024.
Article in English | MEDLINE | ID: mdl-38880623

ABSTRACT

Probucol is a hyperlipidemic drug with antioxidant properties. It has been reported to prevent mitochondrial dysfunction, reduce oxidative stress, and suppress neurotoxicity in neurodegenerative disease models, including Parkinson's disease models. However, the molecular mechanisms underlying the neuroprotective effects of probucol have been not examined yet. Thus, in this study, we investigated whether probucol can alleviate the effects of a mitochondrial complex I inhibitor, rotenone, on a human neuroblastoma cell line (SH-SY5Y). We evaluated the cell viability and cytotoxicity and apoptosis rates of SH-SY5Y cells treated with rotenone and probucol or edaravone, a known free-radical scavenger. Subsequently, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels in the cells were evaluated to determine the effects of probucol on mitochondrial function. We found that rotenone caused cytotoxicity, cell apoptosis, and mitochondrial dysfunction, enhanced ROS generation, and impaired MMP. However, probucol could inhibit this rotenone-induced decrease in cell viability, MMP loss, intracellular ROS generation, and apoptosis. These results suggest that probucol exerts neuroprotective effects via MMP stabilization and the inhibition of ROS generation. Additionally, this effect of probucol was equal to or greater than and more persistent than that of edaravone. Thus, we believe probucol may be a promising drug for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases.


Subject(s)
Apoptosis , Cell Survival , Membrane Potential, Mitochondrial , Neuroprotective Agents , Probucol , Reactive Oxygen Species , Rotenone , Probucol/pharmacology , Rotenone/toxicity , Humans , Reactive Oxygen Species/metabolism , Neuroprotective Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology
5.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

6.
J Drug Target ; : 1-19, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38758361

ABSTRACT

The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimising systemic side effects and optimising targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.

7.
J Pharm Sci ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734207

ABSTRACT

Targeted drug delivery is an ongoing aspect of scientific research that is expanding through the design of micro- and nanoparticles. In this paper, we focus on spray dried microparticles as carriers for a repurposed lipophilic antioxidant (probucol). We characterise the microparticles and quantify probucol prior to assessing cytotoxicity on both control and cisplatin treated hair cells (known as House Ear Institute-Organ of Corti 1; HEI-OC1). The addition of water-soluble polymers to 2% ß-cyclodextrin resulted in a stable probucol formulation. Ursodeoxycholic acid (UDCA) used as formulation excipient increases probucol miscibility and microparticle drug content. Formulation characterisations reveals spray drying results in spherical UDCA-drug microparticles with a mean size distribution of ∼5-12 µm. Probucol microparticles show stable short-term storage conditions accounting for only ∼10% loss over seven days. By mimicking cell culture conditions, both UDCA-probucol (67%) and probucol only (82%) microparticles show drug release in the initial two hours. Furthermore, probucol formulations with or without UDCA preserve cell viability and reduce cisplatin-induced oxidative stress. Mitochondrial bioenergetics results in lower basal respiration and non-mitochondrial respiration, with higher maximal respiration, spare capacity, ATP production and proton leak within cisplatin challenged UDCA-probucol groups. Overall, we present a facile method for incorporating lipophilic antioxidant carriers in polymer-based particles that are tolerated by HEI-OC1 cells and show stable drug release, sufficient in reducing cisplatin-induced reactive oxygen species accumulation.

8.
Aging (Albany NY) ; 16(5): 4363-4377, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38441564

ABSTRACT

BACKGROUND: Neuronal injury in chronic cerebral hypoperfusion (CCH) is the main pathogenic factor of vascular dementia (VD). Clinically, there isn't a drug specifically for VD; instead, the majority of medications used to treat Alzheimer's disease (AD) are also used to treat VD. Based on the proven anti-inflammatory and antioxidant effects of Probucol, we hypothesized that it may have therapeutic effects on VD, but more research is required to determine its exact mechanism of action. METHODS: In vivo experiment: We used SD rats and most commonly used bilateral carotid artery occlusion (2-VO) in VD for modeling. After successful modeling, SD rats were given Probucol 3.5 mg/kg/day for 8 weeks to evaluate the therapeutic effect. In vitro experiment: BV-2 microglia of rats were cultured and divided into Control group and Probucol group. Each group was treated with hypoxia-hypoglycemia, hypoxia-hypoglycemia hydrogen peroxide and hypoxia-hypoglycemia hydrogen peroxide Syk inhibitor respectively. RESULTS: The results of immunofluorescence and Western blot showed that Probucol could significantly improve the cognitive impairment induced by CCH, and the neuronal damage was also attenuated. On the one hand, the underlying mechanism of Probucol was to reduce oxidative stress and cell apoptosis of hippocampal neurons by inhibiting the expression of phosphorylated spleen tyrosine kinase (P-Syk); On the other hand, it exerted a protective effect by reducing NLRP3-dependent cell pyroptosis and inhibiting neuroinflammation induced by microglia activation. CONCLUSION: Probucol could reduce oxidative stress and cell apoptosis by inhibiting the Syk/ROS signaling pathway, thereby improving CCH-induced cognitive impairment in vitro and in vivo.


Subject(s)
Brain Ischemia , Dementia, Vascular , Hypoglycemia , Rats , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Probucol/pharmacology , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Pyroptosis , Hydrogen Peroxide/pharmacology , Brain Ischemia/metabolism , Hippocampus/metabolism , Hypoxia/metabolism
9.
Ther Deliv ; 15(4): 237-252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38469721

ABSTRACT

Aim: Excessive free radicals contribute to oxidative stress and mitochondrial dysfunction in sensorineural hearing loss (SNHL). The antioxidant probucol holds promise, but its limited bioavailability and inner ear barriers hinder effective SNHL treatment. Methodology: We addressed this by developing probucol-loaded nanoparticles with polymers and lithocholic acid and tested them on House Ear Institute-Organ of Corti cells. Results: Probucol-based nanoparticles effectively reduced oxidative stress-induced apoptosis, enhanced cellular viability, improved probucol uptake and promoted mitochondrial function. Additionally, they demonstrated the capacity to reduce reactive oxygen species through the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Conclusion: This innovative nanoparticle system holds the potential to prevent oxidative stress-related hearing impairment, providing an effective solution for SNHL.


Hearing loss affects millions of people worldwide, and its prevalence is expected to double by 2050. Current treatments have limitations, pushing researchers to explore new options. Oxidative stress is a key player in hearing loss and is known to damage inner ear hair cells. While antioxidants, known for their protective effects, hold promise, delivering them effectively to the inner ear is challenging. Scientists have been testing nanoparticles loaded with the antioxidant probucol to fight hearing loss. In this study, these particles protected inner ear cells in cell studies, offering potential hope for preventing hearing problems. This research is a significant step toward finding better treatments for hearing loss.


Subject(s)
Ear, Inner , Hearing Loss, Sensorineural , Nanoparticles , Humans , Probucol/pharmacology , Oxidative Stress , Antioxidants/pharmacology , Hearing Loss, Sensorineural/therapy
10.
Chem Pharm Bull (Tokyo) ; 72(2): 190-199, 2024.
Article in English | MEDLINE | ID: mdl-38369345

ABSTRACT

A co-amorphous model drug was prepared by the spray-drying (SD) of probucol (PC) and atorvastatin calcium trihydrate salt (ATO) as low water solubility and co-former components, respectively. The physicochemical properties of the prepared samples were characterized by powder X-ray diffraction (PXRD) analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and dissolution tests. Stability tests were also conducted under a stress environment of 40 °C and 75% relative humidity. The results of PXRD measurements and thermal analysis suggested that PC and ATO form a co-amorphous system by SD. Thermal analysis also indicated an endothermic peak that followed an exotherm in amorphous PC and a physical mixture (PM) of amorphous PC and ATO; however, no endothermic peak was detected in the co-amorphous system. The dissolution profiles for PC in the co-amorphous sample composed of PC and ATO were improved compared to those for raw PC crystals or the PM. Stability tests indicated that the co-amorphous material formed by PC and ATO can be stored for 35 d without crystallization, whereas amorphous PC became crystallized within a day. Therefore, co-amorphization of PC and ATO prepared by SD is considered to be a useful method to improve the solubility of PC in water.


Subject(s)
Probucol , Water , Atorvastatin , Probucol/chemistry , Drug Stability , Crystallography, X-Ray , X-Ray Diffraction , Water/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning
11.
Curr Med Chem ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178664

ABSTRACT

Antiplatelet, antihypertensive, and lipid-lowering agents are the three foundational agents for secondary prevention of ischemic stroke, among which lipid-lowering is one of the most important cornerstones. Probucol is a potent antioxidative lipid-lowering drug used to prevent and treat atherosclerotic cardiovascular diseases and xanthomas. However, it has faded from Western markets by lowering LDL-C and HDL-C levels. Probucol alleviates atherosclerosis improving high-density lipoprotein function, and does not increase the risk of cardiovascular events. Probucol-induced pharmacological changes in HDL-C may not be a reliable prognostic marker for cardiovascular risk. Q-T interval prolongation is a rare adverse reaction as described in the manufacturer's instructions, but prolonged Q-T interval may only be an intermediate pharmacological phenomenon of electrophysiological changes, and as a result, probucol has a strong benefit for secondary prevention of cardiovascular events and can reduce mortality without increasing the risk of cardiovascular and cerebrovascular adverse events. The new mechanism is that probucol penetrates the core of lowdensity lipoprotein particles, enhancing the activity of plasma cholesteryl ester transfer protein and liver scavenger receptor type I activity, thereby reducing LDH; at the same time, increasing the activity of paraoxonase 1, strengthened the antioxidant function of HDL, and reduced the serum HDL-C. If clinical or imaging findings suggest a high risk of recurrence of cerebral ischemia with a high risk of cerebral hemorrhage, probucol may be selected for prevention. This article focuses on basic research and clinical evidence and provides new insights into the low bioavailability.

12.
Transl Neurodegener ; 13(1): 6, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38247000

ABSTRACT

Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood-brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and cognitive impairment associated with diabetes.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Probucol/therapeutic use , Blood-Brain Barrier
13.
Acta Biomater ; 175: 262-278, 2024 02.
Article in English | MEDLINE | ID: mdl-38141933

ABSTRACT

Hepatic fibrosis is a common pathological process in chronic liver diseases, characterized by excessive reactive oxygen species (ROS), activated hepatic stellate cells (HSCs), and massive synthesis of extracellular matrix (ECM), which are important factors in the development of liver cirrhosis, liver failure, and liver cancer. During the development of hepatic fibrosis, ECM collagen produced by activated HSCs significantly hinders medication delivery to targeted cells and reduces the efficiency of pharmacological therapy. In this study, we designed a multifunctional hyaluronic acid polymeric nanoparticle (HA@PRB/COL NPs) based on autophagy inhibitor probucol (PRB) and collagenase type I (COL) modification, which could enhance ECM degradation and accurately target HSCs through specificity binding CD44 receptor in hepatic fibrosis therapy. Upon encountering excessive collagen I-deposition formed barrier, HA@PRB/COL NPs performed the nanodrill-like function to effectively degrade pericellular collagen I, leading to greater ECM penetration and prominent HSCs internalization capacity of delivered PRB. In mouse hepatic fibrosis model, HA@PRB/COL NPs were efficiently delivered to HSCs through binding CD44 receptor to achieve efficient accumulation in fibrotic liver. Further, we showed that HA@PRB/COL NPs executed the optimal anti-fibrotic activity by inhibiting autophagy and activation of HSCs. In conclusion, our novel dual-functional co-delivery system with degrading fibrotic ECM collagen and targeting activated HSCs exhibits great potentials in the treatment of hepatic fibrosis in clinic. STATEMENT OF SIGNIFICANCE: The excess release of extracellular matrix (ECM) such as collagen in hepatic fibrosis hinders medication delivery and decreases the efficiency of pharmacological drugs. We aimed to develop a nano-delivery carrier system with protein hydrolyzed surfaces and further encapsulated an autophagy inhibitor (PRB) to enhance fibrosis-related ECM degradation-penetration and hepatic stellate cells (HSCs) targeting in hepatic fibrosis niche (HA@PRB/COL NPs). The COL of HA@PRB/COL NPs successfully worked as a scavenger to promote the digestion of the ECM collagen I barrier for deeper penetration into fibroid liver tissue. It also accurately targeted HSCs through specifically binding to the CD44 receptor and subsequently released PRB to inhibit autolysosome and ROS generation, thus preventing HSCs activation. Our HA@PRB/COL NPs system provided a promising therapeutic strategy for hepatic fibrosis in a clinic setting.


Subject(s)
Hepatic Stellate Cells , Nanoparticles , Mice , Animals , Hepatic Stellate Cells/metabolism , Probucol/pharmacology , Probucol/metabolism , Probucol/therapeutic use , Reactive Oxygen Species/metabolism , Liver Cirrhosis/metabolism , Liver/pathology , Extracellular Matrix/metabolism , Collagen/metabolism , Collagen Type I/metabolism , Collagenases/metabolism , Disease Models, Animal
14.
Int Ophthalmol ; 43(12): 4595-4604, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688651

ABSTRACT

PURPOSE: This study investigated the protective effect of probucol on Müller cells exposed to high glucose conditions and examined potential mechanisms of action. METHODS: Primary human retinal Müller cells were incubated with high glucose (HG, 35 mM) in the present or absence of different concentrations of probucol for 24 h. Cell viability was determined using the CCK-8 method. Mitochondrial membrane potential (MMP) was measured using JC-1 staining and cell cycle by flow cytometry. The expression of nuclear factor E2-related factor 2 (Nrf2), glutamate-cysteine ligase catalytic subunit, and p62 was quantified using quantitative polymerase chain reaction and western blot. RESULTS: We found that HG inhibited cell proliferation, arrested cell cycle, and increased MMP in human Müller cells. Probucol activated the Nrf2/p62 pathway and upregulated the anti-apoptotic protein, Bcl2, and attenuated HG-mediated damage in Müller cells. CONCLUSIONS: Our results suggest that probucol may protect Müller cells from HG-induced damage through enhancing the Nrf2/p62 signaling pathway.


Subject(s)
Ependymoglial Cells , Probucol , Signal Transduction , Humans , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Glucose/metabolism , Glucose/pharmacology , NF-E2-Related Factor 2 , Probucol/pharmacology
15.
Toxicol Ind Health ; 39(11): 638-650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37705340

ABSTRACT

Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 µM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 µM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.


Subject(s)
Antioxidants , Manganese , Rats , Animals , Male , Manganese/toxicity , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/metabolism , Probucol/pharmacology , Probucol/metabolism , Neuroprotection , Oxidative Stress , Brain
16.
Medicina (Kaunas) ; 59(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763768

ABSTRACT

Background and Objectives: Polymer-free ultrathin strut sirolimus- and probucol-eluting stents (PF-SES) are recognized as safe and effective in diverse patient populations, although the implications of post-dilation during stent implantation remain underexamined. Materials and Methods: In this study, patients implanted with PF-SES at Gachon University Gil Medical Center between December 2014 and February 2018 were evaluated. Major adverse cardiovascular events (MACE), encompassing nonfatal myocardial infarction (MI), nonfatal stroke, and cardiovascular death were identified as primary outcomes, with secondary outcomes including target vessel revascularization (TVR), target lesion revascularization (TLR), and in-stent restenosis (ISR). Results: Of the 384 initial patients, 299 were considered eligible for analysis. The groups, delineated by those undergoing post-dilation (143 patients) and those not (156 patients), exhibited comparable rates of primary outcomes [hazard ratio (HR), 2.17; 95% confidence interval (CI), 0.40 to 11.87; p = 0.37]. The outcomes remained consistent irrespective of the post-dilation status and were similarly unaffected in multivariate analyses (HR, 2.90; 95% CI, 0.52 to 16.34; p = 0.227). Conclusions: These results suggest that the clinical outcomes of patients with post-dilation were similar to that of those without post-dilation in those with the polymer-free sirolimus- and probucol-eluting stents.

17.
Nanomedicine (Lond) ; 18(12): 923-940, 2023 05.
Article in English | MEDLINE | ID: mdl-37529927

ABSTRACT

Background: Sensorineural hearing loss has been associated with oxidative stress. However, an antioxidant that passes effectively through the ear remains elusive. Method: Probucol (PB)-based nanoparticles were formed using a spray-drying encapsulation technique, characterized and tested in vitro. Results: Uniform, spherical nanoparticles were produced. The addition of lithocholic acid to PB formulations did not affect drug content or production yield, but it did modify capsule size, surface tension, electrokinetic stability and drug release. Cell viability, bioenergetics and inflammatory profiles were improved when auditory cells were exposed to PB-based nanoparticles, which showed antioxidant properties (p < 0.05). Conclusion: PB-based nanoparticles can potentially protect the auditory cell line from oxidative stress and could be used in future in vivo studies as a potential new therapeutic agent for sensorineural hearing loss.


Oxidative stress is an imbalance of cellular processes in which the production of free radicals outweighs the cellular defense mechanism. The association of oxidative stress with the pathophysiology of sensorineural hearing loss (SHL) is well established. SHL development is associated with chronic damage in the structure of the inner ear or auditory nerve. Therefore, potent antioxidants such as probucol could be one way to prevent or treat SHL. However, due to its isolated position, SHL is challenging to treat, imposing a desperate need for refining existing therapeutic methods; one way to do this is by optimizing the formulation using nanoparticles. We aimed to design a novel, stable formulation of PB using polymers and excipients to develop nanoparticles and examine the efficiency of these formulations on the HEI-OC1 stress cell line. We found that the prepared nanoparticle is robust and stable and protects HEI-OC1 from cellular toxicity and oxidative stress. It could be a novel therapeutic agent to treat or prevent SHL.


Subject(s)
Hearing Loss, Sensorineural , Nanoparticles , Humans , Probucol/pharmacology , Antioxidants/pharmacology , Bile Acids and Salts/pharmacology , Oxidative Stress , Hearing Loss, Sensorineural/drug therapy , Hearing Loss, Sensorineural/prevention & control , Hearing , Pharmaceutical Preparations
18.
Drug Dev Res ; 84(7): 1496-1512, 2023 11.
Article in English | MEDLINE | ID: mdl-37571798

ABSTRACT

A reliable and efficient in vitro model is needed to screen drugs for Alzheimer's disease (AD), as many drugs are currently in the developmental stage. To address this, we developed an in vitro model using amniotic membrane-derived mesenchymal stem cells (AM-MSCs) to screen novel drugs for AD. We differentiated AM-MSCs into neurons and degenerated them using beta amyloid1-42 (Aß). We then tested AD drugs, which are commercially available such as donepezil, rivastigmine, memantine, citicoline, and two novel drugs, that is, probucol, an anti-hyperlipidaemic drug, and NMJ-2, a cinnamic acid analogue for their potential to protect the cells against neurodegeneration. We used gene expression and immunofluorescence staining to assess the neuroprotective ability of these drugs. We also measured the ability of these drugs to reduce lactate dehydrogenase, reactive oxygen species, and nitric oxide levels, as well as their ability to stabilize the mitochondrial membrane potential and increase acetylcholine (ACh) levels. The AD drugs and novel drugs reduced cytotoxicity and oxidative stress, stabilized mitochondrial membrane potential, and restored ACh levels. Furthermore, they reduced BACE1 expression, with a concomitant increase in the expression of cholinergic markers. This AM-MSCs-based AD-like model has immense potential to be an accurate human model and an alternative to animal models for testing a large number of lead compounds in a short time. Our results also suggest that the novel drugs probucol and NMJ-2 may protect against Aß-induced neurodegeneration.


Subject(s)
Alzheimer Disease , Mesenchymal Stem Cells , Animals , Humans , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases , Probucol/metabolism , Drug Evaluation, Preclinical , Aspartic Acid Endopeptidases , Mesenchymal Stem Cells/metabolism
19.
ACS Chem Neurosci ; 14(16): 2857-2867, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37499207

ABSTRACT

Oxidative glutamate toxicity is regarded as one of the injurious mechanisms associated with ischemic stroke, which represents a major health problem and requires improved pharmacological treatments. We designed and synthesized two new probucol analogues [2,6-di-tert-butyl-4-selenocyanatophenol (C1) and 4,4'-diselanediylbis (2,6-di-tert-butylphenol) (C2)] and investigated their effects against glutamate-induced neuronal oxidative toxicity in vitro in cultured HT22 cells, compared with their parental compound (probucol). In addition, C2, which exhibited the lowest toxicity, was investigated in an in vivo rodent model of ischemic stroke. Glutamate caused concentration- and time-dependent cytotoxicity in HT22 neuronal cells, which was preceded by increased levels of oxidants and depletion of the antioxidant glutathione. The analogues (C1 and C2), but not probucol, significantly decreased the levels of oxidants (including mitochondrial superoxide anion and lipid reactive oxygen species (ROS)) and protected against glutamate-induced cytotoxicity. In the in vivo model of ischemic stroke, which was based on central injections of the vasoconstrictor agent endothelin-1 (800 pmol/site), C2 (20 or 50 mg/kg/day, intraperitoneally, for 4 consecutive days after stroke) displayed significant beneficial effects against ischemic injury in vivo, improving rats' motor-related behavioral skills and decreasing stroke-related striatal gliosis. This is the first study to design, synthesize, and present a probucol analogue (C2) with in vivo beneficial effects against ischemic stroke. This novel compound, which was able to mitigate glutamate-induced oxidative toxicity in vitro, represents a promising neuroprotective drug.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Rats , Animals , Probucol/pharmacology , Neuroprotection , Glutamic Acid/toxicity , Rodentia , Oxidative Stress , Neuroprotective Agents/pharmacology , Oxidants/pharmacology
20.
Br J Pharmacol ; 180(20): 2605-2622, 2023 10.
Article in English | MEDLINE | ID: mdl-37263748

ABSTRACT

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide, yet pharmacotherapies for TBI are currently lacking. Neuroregeneration is important in brain repair and functional recovery. In this study, probucol, a cholesterol-lowering drug with established safety profiles, was examined for its therapeutic effects and neuroregenerative actions in TBI. EXPERIMENTAL APPROACH: Male mice were subjected to the controlled cortical impact model of TBI, followed by daily administration of probucol. Neurological and cognitive functions were evaluated. Histological analyses of the neocortex and hippocampus were performed to detect the lesion, dendritic degeneration (microtubule-associated protein 2), synaptic density (synaptophysin), neurogenesis (doublecortin), brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) activation. Involvement of BDNF/TrkB pathway in probucol-mediated effects was examined in primary cultures of cortical neurons. KEY RESULTS: Probucol reduced brain lesion volume, enhanced the recovery of body symmetry, improved motor function and attenuated memory dysfunction after TBI. Meanwhile, probucol promoted post-injury dendritic growth and synaptogenesis and increased hippocampal proliferating neuronal progenitor cells, along with the formation as well as the survival of newborn neurons. Moreover, probucol enhances BDNF expression and TrkB activation. In vitro, probucol promoted neurite outgrowth, which was inhibited by a selective TrkB antagonist ANA-12. CONCLUSIONS AND IMPLICATIONS: Probucol enhanced functional restoration and ameliorated cognitive impairment after TBI by promoting post-injury neuronal remodelling and neurogenesis. Increased activation of BDNF/TrkB pathway by probucol, at least in part, contributed to the neuroregenerative effects of probucol. Together, it may be promising to repurpose probucol for TBI.


Subject(s)
Brain Injuries, Traumatic , Receptor, trkB , Mice , Animals , Male , Receptor, trkB/metabolism , Probucol/pharmacology , Probucol/therapeutic use , Tropomyosin , Brain-Derived Neurotrophic Factor/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Nerve Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...