Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.496
Filter
1.
Asian J Pharm Sci ; 19(3): 100922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966286

ABSTRACT

Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.

2.
Cancer Lett ; : 217102, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969157

ABSTRACT

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. Hypoxia-activated prodrugs (HAPs) have shown promise as potential therapeutic agents for TNBC. While increasing hypoxia levels may promote the HAP activation, it raises concerns regarding HIF1α-dependent drug resistance. It is desirable to develop a targeted approach that enhances tumor hypoxia for HAP activation without promoting HIF1α-dependent drug resistance in TNBC treatment. Herein, we proposed a multi-responsive carrier-free self-assembled nanomedicine named AQ4N@CA4T1ASO. This nanomedicine first targeted tumors by the TNBC-targeting aptamers (T1), and then disassembled in the reductive and acidic conditions within tumors. The released Combretastatin 4 (CA4) could exacerbate hypoxia, thereby promoting the conversion of inactive Banoxantrone (AQ4N) to its active form, AQ4. Simultaneously, the released antisense oligonucleotide (ASO) could attenuate hypoxia-induced HIF1α mRNA expression, thereby sensitizing the tumor to chemotherapy. Overall, this smart nanomedicine represents a profound targeted therapy strategy, combining "hypoxia-potentiating, hypoxia-activated, chemo-sensitization" approaches for TNBC treatment. In vivo study demonstrated significant suppression of tumor growth, highlighting the promising potential of this nanomedicine for future clinical translation.

3.
Asian J Pharm Sci ; 19(3): 100923, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948398

ABSTRACT

The intrinsic resistance of MRSA coupled with biofilm antibiotic tolerance challenges the antibiotic treatment of MRSA biofilm infections. Phytochemical-based nanoplatform is a promising emerging approach for treatment of biofilm infection. However, their therapeutic efficacy was restricted by the low drug loading capacity and lack of selectivity. Herein, we constructed a surface charge adaptive phytochemical-based nanoparticle with high isoliquiritigenin (ISL) loading content for effective treatment of MRSA biofilm. A dimeric ISL prodrug (ISL-G2) bearing a lipase responsive ester bond was synthesized, and then encapsulated into the amphiphilic quaternized oligochitosan. The obtained ISL-G2 loaded NPs possessed positively charged surface, which allowed cis-aconityl-d-tyrosine (CA-Tyr) binding via electrostatic interaction to obtain ISL-G2@TMDCOS-Tyr NPs. The NPs maintained their negatively charged surface, thus prolonging the blood circulation time. In response to low pH in the biofilms, the fast removal of CA-Tyr led to a shift in their surface charge from negative to positive, which enhanced the accumulation and penetration of NPs in the biofilms. Sequentially, the pH-triggered release of d-tyrosine dispersed the biofilm and lipase-triggered released of ISL effectively kill biofilm MRSA. An in vivo study was performed on a MRSA biofilm infected wound model. This phytochemical-based system led to ∼2 log CFU (>99 %) reduction of biofilm MRSA as compared to untreated wound (P < 0.001) with negligible biotoxicity in mice. This phytochemical dimer nanoplatform shows great potential for long-term treatment of resistant bacterial infections.

4.
Chembiochem ; : e202400426, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965692

ABSTRACT

Paclitaxel and its derivates are the first-line chemotherapeutic agents of breast cancer, which also showed tremendous clinical value in many other diseases including ovarian cancer, lung cancer etc. However, there are many drawbacks for almost all paclitaxel or its derivates, including extremely short half-life, poor solubility and adverse events, which significantly limits their clinical applications. In this work, we designed and constructed a bispecific hydrolysis PAP-SS-PTX, consisting with pro-apoptosis peptide (PAP) and paclitaxel (PTX) that were conjugated together via disulfide and ester bonds. On the one hand, PAP could improve the solubility of PTX and promote cellular uptake for drugs. On the other hand, it was able to prolong the PTX half-life. We performed series of chemo-dynamical assays and showed that PDC would release active drug molecules under micro-acidic and reduction circumstance. The further assays elucidated that PDC could interrupt DNA synthesis and arrest cell division through downregulating CDK4/6 and Histone methylation that inhibit tumor growth in vitro. What's more, it could not only inhibit 4T1 breast tumor growth, but also prolong the survival time of mice and exert antitumor efficacy in vivo. It may provide a new research idea for cancer therapies via controlled release strategy in tumor microenvironment.

5.
Adv Sci (Weinh) ; : e2405583, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984484

ABSTRACT

The clinical translation of tumor hypoxia intervention modalities still falls short of expectation, restricted by poor biocompatibility of oxygen-carrying materials, unsatisfactory oxygen loading performance, and abnormally high cellular oxygen consumption-caused insufficient hypoxia relief. Herein, a carrier-free oxygen nano-tank based on modular fluorination prodrug design and co-assembly nanotechnology is elaborately exploited, which is facilely fabricated through the molecular nanoassembly of a fluorinated prodrug (FSSP) of pyropheophorbide a (PPa) and an oxygen consumption inhibitor (atovaquone, ATO). The nano-tank adeptly achieves sufficient oxygen enrichment while simultaneously suppressing oxygen consumption within tumors for complete tumor hypoxia alleviation. Significant, the fluorination module in FSSP not only confers favorable co-assemblage of FSSP and ATO, but also empowers the nanoassembly to readily carry oxygen. As expected, it displays excellent oxygen carrying capacity, favorable pharmacokinetics, on-demand laser-triggerable ATO release, closed-loop tumor hypoxia relief, and significant enhancement to PPa-mediated PDT in vitro and in vivo. This study provides a novel nanotherapeutic paradigm for tumor hypoxia intervention-enhanced cancer therapy.

6.
Angew Chem Int Ed Engl ; : e202408473, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979839

ABSTRACT

We report an endoperoxide compound (E5) which can deliver three therapeutic components by a thermal cycloreversion, namely, singlet oxygen, triplet oxygen and 3-methyl-N-phenyl-2-pyridone, thus targeting multiple mechanisms for treating non-small cell lung cancer and idiopathic pulmonary fibrosis. In aqueous environment, E5 undergoes clean reaction to afford three therapeutic components with a half-life of 8.3 hours without the generation of other by-products, which not only achieves good cytotoxicity toward lung cancer cells and decreases the levels of HIF-1α protein, but also inhibits the TGF-ß1 induced fibrosis in vitro. In vivo experiments also demonstrated the efficacy of E5 in inhibiting tumor growth and relieving idiopathic pulmonary fibrosis, while exhibiting good biocompatibility. Many lines of evidence reveal the therapeutic efficacy of singlet oxygen and 3-methyl-N-phenyl-2-pyridone, and triplet oxygen could downregulate HIF-1α and relieve tumor hypoxia which is a critical issue in conventional PDT. Unlike other combination therapies, in which multiple therapeutic agents are given in independent formulations, our work demonstrates single molecule endoperoxide prodrugs could be developed as new platforms for treatment of cancers and related diseases.

7.
Adv Healthc Mater ; : e2401599, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38973653

ABSTRACT

Nitric oxide (NO) is a crucial gaseous signaling molecules in regulating cardiovascular, immune, and nervous systems. Controlled and targeted NO delivery is imperative for treating cancer, inflammation, and cardiovascular diseases. Despite various enzyme-prodrug therapy (EPT) systems facilitating controlled NO release, their clinical utility is hindered by nonspecific NO release and undesired metabolic consequence. In this study, a novel EPT system is presented utilizing a cellobioside-diazeniumdiolate (Cel2-NO) prodrug, activated by an endocellulase (Cel5A-h38) derived from the rumen uncultured bacterium of Hu sheep. This system demonstrates nearly complete orthogonality, wherein Cel2-NO prodrug maintains excellent stability under endogenous enzymes. Importantly, Cel5A-h38 efficiently processes the prodrug without recognizing endogenous glycosides. The targeted drug release capability of the system is vividly illustrated through an in vivo near-infrared imaging assay. The precise NO release by this EPT system exhibits significant therapeutic potential in a mouse hindlimb ischemia model, showcasing reductions in ischemic damage, ambulatory impairment, and modulation of inflammatory responses. Concurrently, the system enhances tissue repair and promotes function recovery efficacy. The novel EPT system holds broad applicability for the controlled and targeted delivery of essential drug molecules, providing a potent tool for treating cardiovascular diseases, tumors, and inflammation-related disorders.

8.
Expert Opin Investig Drugs ; : 1-10, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38988285

ABSTRACT

BACKGROUND: Considering the rise of new SARS-CoV-2 variants that have reduced the efficacy of COVID-19 vaccines, the development of new antiviral medications for the disease has become increasingly necessary. In this study, ASC10, a novel antiviral prodrug, was studied in a phase 1 trial in healthy Chinese participants. RESEARCH DESIGN AND METHODS: Part 1 involved 60 participants, receiving 50-800 mg ASC10 or placebo twice daily for 5.5 days. Part 2, with 12 participants, explored ASC10 dosing in the fed/fasting states. RESULTS: ASC10-A, the main pharmacologically active metabolite, rapidly appeared in plasma (Tmax: 1.00-2.00 h) and decreased (t1/2: 1.10-3.04 h) without accumulation. The Cmax and area under the plasma concentration - time curve (AUC) of ASC10-A increased dose-dependently (50-800 mg BID) over 5.5 days, with no accumulation. The Tmax was slightly delayed in the fed state; however, the Cmax and AUC were similar between the fed and fasting states. Adverse events (AEs) were comparable (ASC10/placebo, 66.7%) and mostly mild (95%). CONCLUSION: ASC10 was demonstrated to be safe and well tolerated and exhibited dose-proportional exposure and minimal food effects. CLINICAL TRIAL REGISTRATION: www.clinicaltrials.gov identifier is NCT05523141.

9.
Angew Chem Int Ed Engl ; : e202406158, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885607

ABSTRACT

Depot-type drug delivery systems are designed to deliver drugs at an effective rate over an extended period. Minimizing initial "burst" can also be important, especially with drugs causing systemic toxicity. Both goals are challenging with small hydrophilic molecules. The delivery of molecules such as the ultrapotent local anesthetic tetrodotoxin (TTX) exemplifies both challenges. Toxicity can be mitigated by conjugating TTX to polymers with ester bonds, but the slow ester hydrolysis can result in subtherapeutic TTX release. Here, we developed a prodrug strategy, based on dynamic covalent chemistry utilizing a reversible reaction between the diol TTX and phenylboronic acids. These polymeric prodrugs exhibited TTX encapsulation efficiencies exceeding 90 % and the resulting polymeric nanoparticles showed a range of TTX release rates. In vivo injection of the TTX polymeric prodrugs at the sciatic nerve reduced TTX systemic toxicity and produced nerve block lasting 9.7±2.0 h, in comparison to 1.6±0.6 h from free TTX. This approach could also be used to co-deliver the diol dexamethasone, which prolonged nerve block to 21.8±5.1 h. This work emphasized the usefulness of dynamic covalent chemistry for depot-type drug delivery systems with slow and effective drug release kinetics.

10.
Mini Rev Med Chem ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38879766

ABSTRACT

Ferroptosis is a novel type of programmed cell death that relies on the build-up of intracellular iron and leads to an increase in toxic lipid peroxides. Glutathione Peroxidase 4 (GPX4) is a crucial regulator of ferroptosis that uses glutathione as a cofactor to detoxify cellular lipid peroxidation. Targeting GPX4 in cancer could be a promising strategy to induce ferroptosis and kill drugresistant cancers effectively. Currently, research on GPX4 inhibitors is of increasing interest in the field of anti-tumor agents. Many reviews have summarized the regulation and ferroptosis induction of GPX4 in human cancer and disease. However, insufficient attention has been paid to GPX4 inhibitors. This article outlines the molecular structures and development prospects of GPX4 inhibitors as novel anticancer agents.

11.
ChemMedChem ; : e202400416, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887174

ABSTRACT

STING agonists are potent enhancers of a pro-inflammatory response and, thus, potentially useful therapeutics. Unfortunately, many agonists developed to date require complex drug delivery formulations and often have poor water solubility, limiting their use for systemic administration. Here, we report the discovery and chemical characterization of lactones of MSA-2 as new STING prodrugs with enhanced properties. We show that these prodrugs form efficient inclusion complexes with tumor myeloid cell targeting cyclodextrin nanoparticles and propose a new mechanism of formation and hydrolysis.

12.
Oral Oncol ; 156: 106908, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936007

ABSTRACT

BACKGROUND: This retrospective study aimed to determine the optimal metronomic chemotherapy duration (MTCD) as adjuvant therapy for patients with locally advanced nasopharyngeal carcinoma (LANPC). METHODS: This study involved LANPC patients treated with metronomic chemotherapy (MTC) using a 5-FU prodrug (S1, capecitabine, or tegafur) from May 2013 to September 2020. The optimal MTCD threshold was established using X-tile Bioinformatics software. The overall survival (OS), progression-free survival (PFS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) were compared between short-term and long-term groups using propensity score matching (PSM). RESULTS: A total of 546 patients were analyzed. MTCD was an independent prognostic factor for OS, PFS, and DMFS (all P < 0.05). Patients were categorized into long-term (>3 months) and short-term (≤3 months) MTCD groups. After a median follow-up of 48 months, significant differences were observed in 4-year OS (97.0 % vs. 87.1 %; P < 0.01), PFS (84.6 % vs. 70.9 %; P < 0.01), DMFS (87.3 % vs. 78.8 %; P < 0.01), and LRRFS (95.3 % vs. 87.4 %; P < 0.01) between the long-term and short-term groups. In the PSM-matched cohort of 196 patients per group, the long-term group demonstrated superior 4-year OS and LRRFS (97.3 % vs. 87.1 %, P < 0.01; 95.2 % vs. 90.0 %, P < 0.05). No significant differences in acute toxicities were observed between the groups (P > 0.05). CONCLUSION: Extended MTC with a 5-FU prodrug (>3 months) may benefit NPC patients. Further prospective studies are needed to validate these findings.

13.
Chembiochem ; : e202400452, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940000

ABSTRACT

Cancer is one of the most serious threats to human health. Over the past few years, researchers have incrementally uncovered the pivotal role of tumor acidity in tumor formation, development and treatment through in-depth scientific research. In addition, bioorthogonal reactions have been widely used in tumor diagnosis and therapy, owing to their advantageous characteristics, including small ligand size, biocompatibility, fast reaction kinetics, and high chemospecificity. Consequently, bioorthogonal reactions triggered by tumor acidity have become an emerging strategy in biomedical applications. On this basis, we introduce the concept and major strategies of tumor acidity-triggered bioorthogonal reactions, and review their progress in biomedical applications, with a particular focus on their importance in disease diagnosis and treatment. Finally, clinical challenges and future trends are also outlooked.

14.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928299

ABSTRACT

Bacterial nitroreductase enzymes capable of activating imaging probes and prodrugs are valuable tools for gene-directed enzyme prodrug therapies and targeted cell ablation models. We recently engineered a nitroreductase (E. coli NfsB F70A/F108Y) for the substantially enhanced reduction of the 5-nitroimidazole PET-capable probe, SN33623, which permits the theranostic imaging of vectors labeled with oxygen-insensitive bacterial nitroreductases. This mutant enzyme also shows improved activation of the DNA-alkylation prodrugs CB1954 and metronidazole. To elucidate the mechanism behind these enhancements, we resolved the crystal structure of the mutant enzyme to 1.98 Å and compared it to the wild-type enzyme. Structural analysis revealed an expanded substrate access channel and new hydrogen bonding interactions. Additionally, computational modeling of SN33623, CB1954, and metronidazole binding in the active sites of both the mutant and wild-type enzymes revealed key differences in substrate orientations and interactions, with improvements in activity being mirrored by reduced distances between the N5-H of isoalloxazine and the substrate nitro group oxygen in the mutant models. These findings deepen our understanding of nitroreductase substrate specificity and catalytic mechanisms and have potential implications for developing more effective theranostic imaging strategies in cancer treatment.


Subject(s)
Metronidazole , Nitroimidazoles , Nitroreductases , Nitroreductases/metabolism , Nitroreductases/chemistry , Nitroreductases/genetics , Nitroimidazoles/chemistry , Nitroimidazoles/metabolism , Metronidazole/chemistry , Metronidazole/metabolism , Metronidazole/pharmacology , Prodrugs/metabolism , Prodrugs/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Positron-Emission Tomography/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Catalytic Domain , Protein Engineering , Models, Molecular , Aziridines/chemistry , Aziridines/metabolism
15.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38931385

ABSTRACT

Antimicrobial resistance (AMR) is an increasingly concerning phenomenon that requires urgent attention because it poses a threat to human and animal health. Bacteria undergo continuous evolution, acquiring novel resistance mechanisms in addition to their intrinsic ones. Multidrug-resistant and extensively drug-resistant bacterial strains are rapidly emerging, and it is expected that bacterial AMR will claim the lives of 10 million people annually by 2050. Consequently, the urgent need for the development of new therapeutic agents with new modes of action is evident. The antibacterial prodrug approach, a strategy that includes drug repurposing and derivatization, integration of nanotechnology, and exploration of natural products, is highlighted in this review. Thus, this publication aims at compiling the most pertinent research in the field, spanning from 2021 to 2023, offering the reader a comprehensive insight into the AMR phenomenon and new strategies to overcome it.

16.
Pathogens ; 13(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38921780

ABSTRACT

The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm's digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals-which are then used as a drug against Schistosome adult parasites. This approach is nicely summarized as digging their graves with their forks. Several hybrid peptide-alkoxyamines were prepared and clearly showed an activity: two of the tested compounds kill 50% of the parasites in two hours at a concentration of 100 µg/mL. Importantly, the peptide and alkoxyamine fragments that are unable to generate alkyl radicals display no activity. This strong evidence validates the proposed mechanism: a specific activation of the prodrugs by the parasite proteases leading to parasite death through in situ alkyl radical generation.

17.
Bioorg Med Chem Lett ; 110: 129863, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942129

ABSTRACT

Glioblastoma (GBM) is the most common form of malignant primary brain tumor and is one of the most lethal cancers. The difficulty in treating GBM stems from its highly developed mechanisms of drug resistance. Our research team has recently identified the fungal secondary metabolite ophiobolin A (OpA) as an agent with significant activity against drug-resistant GBM cells. However, the OpA's mode of action is likely based on covalent modification of its intracellular target(s) and thus possible off-target reactivity needs to be addressed. This work involves the investigation of an acid-sensitive OpA analogue approach that exploits the elevated acidity of the GBM microenvironment to enhance the selectivity for tumor targeting. This project identified analogues that showed selectivity at killing GBM cells grown in cultures at reduced pH compared to those maintained under normal neutral conditions. These studies are expected to facilitate the development of OpA as an anti-GBM agent by investigating its potential use in an acid-sensitive analogue form with enhanced selectivity for tumor targeting.

18.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888082

ABSTRACT

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Subject(s)
Immunotherapy , Oxidative Stress , Pyroptosis , Reactive Nitrogen Species , Tumor Microenvironment , Pyroptosis/drug effects , Animals , Reactive Nitrogen Species/metabolism , Mice , Oxidative Stress/drug effects , Tumor Microenvironment/drug effects , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology
19.
Int Immunopharmacol ; 136: 112344, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38833846

ABSTRACT

Systemic sclerosis (SSc) is a devastating autoimmune illness with a wide range of clinical symptoms, including vascular abnormalities, inflammation, and persistent and progressive fibrosis. The disease's complicated pathophysiology makes it difficult to develop effective therapies, necessitating research into novel therapeutic options. Molecular hybridization is a strategy that can be used to develop new drugs that act on two or multiple targets and represents an interesting option to be explored for the treatment of complex diseases. We aimed to evaluate the effects of a hybrid mutual prodrug of ibuprofen and acetaminophen (IBPA) in peripheral blood mononuclear cells (PBMC) isolated from SSc patients, and in an in vivo model of SSc induced in BALB/c mice by intradermal injections of hypochlorous acid (HOCl) for 6 weeks. The mice were treated at the same time with daily intraperitoneal injections of IBPA (40 mg/kg). Pulmonary and skin fibrosis as well as immune responses were evaluated. IBPA significantly decreased the release of cytokines in PBMC culture supernatants from SSc patients after stimulation with phytohemagglutinin-M (IL-2, IL-4, IL-6, IL-10, IL-13, IL-17A, TNF and IFN-γ).In HOCl-induced SSc, IBPA treatment prevented dermal and pulmonary fibrosis, in addition to reducing CD4 + T and B cells activation and reversing the M2 polarization of macrophages in spleen cells, and inhibiting IFN-γ secretion in splenocyte cultures. These results show the anti-inflammatory and antifibrotic effects of IBPA in SSc and highlight the therapeutic potential of this mutual prodrug, providing support for future studies.


Subject(s)
Acetaminophen , Cytokines , Disease Models, Animal , Fibrosis , Ibuprofen , Leukocytes, Mononuclear , Mice, Inbred BALB C , Prodrugs , Scleroderma, Systemic , Animals , Humans , Prodrugs/therapeutic use , Prodrugs/pharmacology , Acetaminophen/pharmacology , Female , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Ibuprofen/therapeutic use , Ibuprofen/pharmacology , Cytokines/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Fibrosis/drug therapy , Mice , Male , Middle Aged , Inflammation/drug therapy , Cells, Cultured , Skin/drug effects , Skin/pathology , Skin/immunology , Hypochlorous Acid , Adult
20.
J Control Release ; 372: 43-58, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38866243

ABSTRACT

Chronic infections often involve biofilm-based bacteria, in which the biofilm results in significant resistance against antimicrobial agents and prevents eradication of the infection. The physicochemical barrier presented by the biofilm matrix is a major impediment to the delivery of many antibiotics. Previously, PEGylation has been shown to improve antibiotic penetration into biofilms in vitro. In these studies, PEGylating tobramycin was investigated both in vitro and in vivo. Two distinct PEGylated tobramycin molecules were synthesized (mPEG-SA-Tob and mPEG-AA-Tob). Then, in a P. aeruginosa biofilm in vitro model, we found that mPEG-SA-Tob can operate as a prodrug and showed 7 times more effectiveness than tobramycin (MIC80: 14 µM vs.100 µM). This improved biofilm eradication is attributable to the fact that mPEG-SA-Tob can aid tobramycin to penetrate through the biofilm and overcome the alginate-mediated antibiotic resistance. Finally, we used an in vivo biofilm-based chronic pulmonary infection rat model to confirm the therapeutic impact of mPEG-SA-Tob on biofilm-based chronic lung infection. mPEG-SA-Tob has a better therapeutic impact than tobramycin in that it cannot only stop P. aeruginosa from multiplying in the lungs but can also reduce inflammation caused by infections and prevent a recurrence infection. Overall, our findings show that PEGylated tobramycin is an effective treatment for biofilm-based chronic lung infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...