Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.805
Filter
1.
Bull Exp Biol Med ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960964

ABSTRACT

In order to obtain models of gliomas of varying degrees of malignancy, we performed morphological and molecular genetic study of a tissue strain of glioma 10-17-2 (Astrid-17) obtained by intracranial passaging of tumor fragments of chemically induced rat brain tumor, and a cell strain isolated from it. More or less pronounced changes in the expression levels of Mki67, Trp53, Vegfa, and Gfap genes in the tissue and cell strain of glioma 10-17-2 (Astrid-17) compared with intact brain tissue were shown. The tissue model of glioma 10-17-2 (Astrid-17) according to the studied characteristics shows features of grade 3-4 astrocytoma and the cellular model - grade 2-3 astrocytoma.

2.
J Neurooncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960965

ABSTRACT

BACKGROUND: Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS: Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS: 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION: Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.

3.
Article in English | MEDLINE | ID: mdl-38967825

ABSTRACT

Trophinin-associated protein (TROAP), a cytoplasmic protein essential for spindle assembly and centrosome integrity during mitosis, has been reported to serve as an oncogene in various tumors. However, its role in endometrial cancer (EC) progression is still undefined. TROAP expression in EC was analyzed via GEPIA and HPA databases. The diagnostic and prognostic values of TROAP were examined by ROC curve analysis and Kaplan-Meier plotter, respectively. Cell proliferation was evaluated using CCK-8 and EdU incorporation assays. Apoptosis was assessed using TUNEL and flow cytometry assays. GSEA was performed to explore TROAP-related pathways in EC. Expression of TROAP, proliferating cell nuclear antigen (PCNA), Ki-67, cleaved-caspase-3 (cl-caspase-3), caspase-3, active ß-catenin, and total ß-catenin was detected using western blot analysis. TROAP was upregulated in EC. TROAP served as a potential diagnostic and prognostic marker in EC patients. TROAP silencing suppressed proliferation and enhanced apoptosis in EC cells. GSEA revealed that EC and Wnt signaling pathways were related to the expression of TROAP. We further demonstrated that TROAP knockout repressed the Wnt/ß-catenin pathway in EC cells. Moreover, SKL2001, a Wnt/ß-catenin activator, partially abrogated the effects of TROAP silencing on EC cell proliferation and apoptosis, while the signaling inhibitor XAV-939 had the opposite effect. In conclusion, TROAP knockout retarded proliferation and elicited apoptosis in EC cells by blocking the Wnt/ß-catenin pathway.

4.
J Gene Med ; 26(7): e3709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949077

ABSTRACT

BACKGROUND: Colorectal cancer is the third most common malignancy worldwide and is one of the leading causes of cancer-related mortality. Ubiquitin-specific peptidase 18 (USP18) protein has been reported to exert different tumor-related effects in distinct tumor types. Here, we initially investigated the expression and signaling pathways of USP18 in colon adenocarcinoma (COAD). METHODS: A quantitative real-time PCR was conducted to evaluate the mRNA level of USP18 in cultured cells. Immunohistochemical staining was used to explore the protein expression of USP18 in clinical COAD samples. Specific knockdown was achieved by transient transfection of small interfering RNAs into SW480 and HT29 cells using Lipo3000. Cell conting kit-8 assay, transwell assay and matrigel-transwell assays were conducted to evaluate proliferation, migration and invasion capacities, respectively. Western blotting was performed to analyze downstream signaling pathways. A chi-squared test and univariate and multivariate analyses were used to evaluate the clinical data. Xenografts from mice model were assessed to validate the in vitro findings. RESULTS: Higher USP18 level was identified in COAD tissues and was positively correlated with advanced tumor stage. High USP18 protein expression indicated poorer prognosis of COAD patients. Silencing USP18 suppressed COAD cell proliferation and invasion via destabilizing extracellular signal-regulated kinase (ERK) protein and suppressing ERK downstream pathways. Simultaneously silencing interferon-stimulated gene 15 (ISG15) with USP18 can partially rescue the tumor cell viability, indicating its involvement in USP18 signaling. The oncogenic effects of USP18 were also confirmed in mice models. CONCLUSIONS: USP18 plays oncogenic effects in colon adenocarcinoma via ISG15-ERK pathways. High USP18 expression indicates poor clinical outcomes for colon adenocarcinoma patients.


Subject(s)
Adenocarcinoma , Cell Movement , Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Signal Transduction , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Mice , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Male , Cell Movement/genetics , Female , Cell Line, Tumor , Disease Progression , Middle Aged , Prognosis , MAP Kinase Signaling System , Extracellular Signal-Regulated MAP Kinases/metabolism , HT29 Cells , Mice, Nude
5.
Front Bioeng Biotechnol ; 12: 1398052, 2024.
Article in English | MEDLINE | ID: mdl-38952668

ABSTRACT

Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.

6.
Article in English | MEDLINE | ID: mdl-38946424

ABSTRACT

MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy. However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically, miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are increased, while those of MFN2 mRNA are decreased, and the increase of miR-373-3p is associated with the decrease of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for colon cancer treatment.

7.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951255

ABSTRACT

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Cytokines , Interleukin-6 , Janus Kinase 2 , Kidney Neoplasms , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Ubiquitins , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cytokines/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice , Cell Line, Tumor , Male , Cell Movement , Female , Apoptosis , Gene Expression Regulation, Neoplastic , Prognosis , Disease Progression
8.
Sci Rep ; 14(1): 15023, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951593

ABSTRACT

Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Procollagen-Proline Dioxygenase , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Female , Male , Neoplasm Metastasis , Middle Aged , Mice, Nude
9.
Environ Res ; : 119555, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964580

ABSTRACT

BACKGROUND: Evidence suggests that prenatal per- and polyfluoroalkyl substances (PFAS) and metals, two classes of chemicals found ubiquitously in human populations, influence immune system development and response. OBJECTIVE: We evaluated whether first trimester blood PFAS and metals were associated with antigen- or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion. METHODS: We measured six PFAS, as well as six nonessential and four essential metals, in first trimester blood from participants in the longitudinal pre-birth Project Viva cohort, recruited between 1999-2000 in eastern Massachusetts. We measured antigen- or mitogen-stimulated cord blood mononuclear cell proliferation responses (n=269-314) and cytokine secretion (n=217-302). We used covariate-adjusted least absolute shrinkage and selection operator (LASSO) for variable selection and multivariable regression to estimate associations with the immune markers. RESULTS: Each ng/mL of MeFOSAA was associated with a 3.6% (1.4, 5.8) higher lymphocyte proliferation response after stimulation with egg antigen, as well as 0.8 (0.7, 1.0) reduced odds of having IFN-γ detected in response to dust mite. Each ng/g increment of cesium was associated with 27.8% (-45.1, -4.9) lower IL-10 levels in response to dust mite. Each ng/g increment of mercury was associated with 12.0% (1.3, 23.8) higher IL-13 levels in response to mitogen PHA. Each ng/g increment of selenium and zinc was associated with 0.2% (0.01, 0.4) and 0.01% (0.002, 0.02) higher TNF-α in response to mitogen PHA, respectively. CONCLUSIONS: Prenatal metals and PFAS influence cord blood lymphocyte proliferation and cytokine secretion in ways that may increase risk for atopic disease in childhood.

10.
Mutat Res ; 829: 111869, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38959562

ABSTRACT

BACKGROUND: Multiple myeloma cancer stem cells (MMSC) have been considered as the leading cause of multiple myeloma (MM) drug resistance and eventual relapse, microRNAs (miRNAs) collectively participate in the progression of MM. However, the pathogenesis of miR-138 in MMSC is still not fully understood. OBJECTIVE: The intention of this study was to investigate the mechanism and role of miR-138 in multiple myeloma. METHOD: Bone marrow samples and peripheral blood from patients and normal controls were collected. Use Magnet-based Cancer Stem Cell Isolation Kit to separate and extract MMSC. Real-time quantitative PCR (RT-qPCR) was carried out to determine mRNA level. Western blot was applied to detect protein levels. MTT and flow cytometry were conducted to examine the proliferation and apoptosis of MMSC. Finally, dual-luciferase reporter gene assays were performed to confirm that paired box 5 (PAX5) is a direct target for miR-138. RESULTS: Compared with normal group, the expression of miR-138 in patients was significantly up-regulated, and the expression of miR-138 was in a negative correlation with PAX5. Additionally, downregulated miR-138 facilitated the apoptosis and inhibited the proliferation of MMSC in vitro and in vivo. Downregulated miR-138 moderated the expression of PAX5, Bcl-2, Bax, and Caspase-3. PAX5 was a direct target of miR-138. CONCLUSION: Taken together, miR-138 plays a carcinogenic role in MM, and miR-138 adjusted the proliferation and apoptosis of MMSC by targeting PAX5. miR-138 has the probability of becoming a new medicinal target for the treatment of MM.

11.
Pathol Res Pract ; 260: 155437, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959625

ABSTRACT

BACKGROUND: Colon adenocarcinoma (COAD) represents a frequent malignant tumor of the digestive system with high mortality and poor prognosis. As a prevalent internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has been reported to participate in tumor malignancy. This study is designed to explore the role and mechanism of Methyltransferase-like 3 (METTL3) in the progression of COAD. METHODS: In this research, the GEPIA database was applied to analyze the relationship between COAD and cell division cycle-associated protein 7 (CDCA7) or METTL3. Cell viability, cell cycle progression, apoptosis, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), flow cytometry, transwell assays. The glycolysis level was detected via specific kits. CDCA7, E-cadherin, N-cadherin, and METTL3 protein levels were determined by western blot assay. The biological role of CDCA7 on COAD tumor growth was examined by the xenograft tumor model in vivo. After RBPsuite analysis, the interaction between METTL3 and CDCA7 was verified by methylated RNA immunoprecipitation (MeRIP). RESULTS: METTL3 and CDCA7 were highly expressed in COAD tissues and cells. Furthermore, the silencing of CDCA7 hindered COAD cell proliferation, migration, invasion, glycolysis, EMT, and promoted apoptosis in vitro, as well as retarded tumor growth in vivo. At the molecular level, METTL3 might enhance the stability of CDCA7 mRNA via m6A methylation. CONCLUSION: METTL3 contributes to the malignant progression of COAD cells partly by regulating the stability of CDCA7 mRNA, providing a promising therapeutic target for COAD treatment.

12.
World J Clin Oncol ; 15(6): 755-764, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38946832

ABSTRACT

BACKGROUND: Tankyrase 2 (TNKS2) is a potential candidate molecular target for the prognosis and treatment of non-small cell lung cancer (NSCLC), but its biological functions are unclear. AIM: To investigate the biological functions of TNKS2 in NSCLC. METHODS: Using a lentiviral vector, we generated H647 model cells with TNKS2 knockdown by RNA interference and A549 model cells with TNKS2 overexpression by transfection with a TNKS2 overexpressing plasmid. Increased and decreased expression levels of TNKS2 in the two cell lines were verified using real-time reverse transcriptase-polymerase chain reaction and Western blot analyses. Cell apoptosis, proliferation, and migration were determined using flow cytometry, carboxyfluorescein succinimidyl ester staining, and scratch assay, respectively. Immunofluorescence staining was conducted to examine TNKS2 and ß-catenin expression levels in the two transfected cell lines and the non-transfected cells. RESULTS: TNKS2 mRNA and protein expression was significantly higher in the highly malignant NCI-H647 cells, while it remained at a low level in the less malignant A549 cells. Lentivirus-mediated overexpression of TNKS2 in A549 cells resulted in a 3-fold increase in gene expression and a 1.7-fold increase in protein expression (P < 0.01). Conversely, shRNA interference targeting TNKS2 Led to an 8-fold decrease in gene expression and a 3-fold decrease in protein expression (P < 0.01) in NCI-H647 cells. Furthermore, the cell apoptosis rate was significantly reduced (50%) and cell migration rate was increased (35%) in the TNKS2 overexpression group than in the control group (P < 0.05). In contrast, shTNKS2 promoted apoptosis by more than one fold and reduced migration by 60% (P < 0.05). Immunofluorescence analysis revealed enhanced nuclear localization of ß-catenin fluorescence signal associated with high TNKS2 expression levels. Western blot analysis investigating TNKS2/ß-catenin-related proteins indicated consistent changes between TNKS2 and ß-catenin expression in lung cancer cells, whereas Axin displayed an opposite trend (P < 0.05). CONCLUSION: The obtained results revealed that TNKS2 may serve as an adverse prognostic factor and a potential therapeutic target in NSCLC.

13.
J Cancer ; 15(13): 4417-4429, 2024.
Article in English | MEDLINE | ID: mdl-38947391

ABSTRACT

Background: Gastric cancer (GC) is one of the most common malignancies worldwide, with high incidence and mortality rate. Tripartite motif-containing 28 (TRIM28) is an important molecule that affects the occurrence and development of tumors, but its function in GC has not been elucidated clearly. The purpose of this study is to explore the molecular mechanism by which TRIM28 affect the GC. Methods: TRIM28 expression was tested in RNA-seq data from TCGA database, tumor tissue samples from patients and GC cell lines. Genes were silenced or overexpressed by siRNA, lentivirus-mediated shRNA, or plasmids. Cell Counting Kit-8 (CCK-8) and colony formation assays were performed to explore the proliferation of GC cells after TRIM28 knockdown. RNA-seq and TCGA database were used to identify target genes. Luciferase report assay was employed to detect the possible mechanism between TRIM28 and Indoleamine 2,3-dioxygenase (IDO1). Tryptophan concentration in cell supernatant was measured using a fluorometric assay kit. MGC-803 and 746T cells were injected into mice to establish xenograft animal models. Results: The expression of TRIM28 was positively correlated with tumor size and poorer prognosis. Upregulation of TRIM28 was observed in GC tissues and cells. In vitro, we proved that knockdown of TRIM28 significantly inhibited the proliferation of GC cells. Then TRIM28 was found to be positively correlated with the expression of IDO1 in GC cells. In accordance with this, tryptophan levels in cell supernatants were increased in TRIM28 knockdown GC cells and overexpression of IDO1 could reverse this phenotype. Serum response factor (SRF), a reported regulator of IDO1, was also regulated by TRIM28 in GC cells. And decreased expression of IDO1 induced by TRIM28 knockdown could be partly reversed through overexpression of serum response factor (SRF) in GC cells. Functional research demonstrated that the expression of IDO1 was increased in GC and IDO1 knockdown could also inhibited the proliferation of GC cells. Furthermore, overexpression of IDO1 could partly reverse proliferation inhibited by TRIM28 knockdown in GC cells. In vivo, knockdown of TRIM28 significantly inhibited the tumor growth and overexpression of IDO1 and SRF both could reverse proliferation inhibited by TRIM28 knockdown. Conclusions: TRIM28 is crucial in the development of GC, and may regulate IDO1 through SRF. TRIM28 promote GC cell proliferation through SRF/IDO1 axis.

14.
Oncol Res ; 32(7): 1209-1219, 2024.
Article in English | MEDLINE | ID: mdl-38948021

ABSTRACT

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Subject(s)
Cell Movement , Drug Resistance, Neoplasm , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Doxorubicin/pharmacology
15.
Regen Ther ; 26: 203-212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948130

ABSTRACT

Introduction: With the increasing emphasis on the use of nonanimal ingredients in clinical care, studies have proposed the use of TrypLE™ as an alternative to trypsin. However, previous research has reported insufficient cell yield and viability when using TrypLE to isolate skin cells compared to the dispase/trypsin-EDTA method. This study aimed to propose an improved method for increasing the yield and viability of cells isolated by TrypLE and to evaluate isolated keratinocytes and melanocytes. Methods: Foreskin tissues were isolated to keratinocytes and melanocytes using the trypsin-EDTA protocol and our modified TrypLE protocol. The yield and viability of freshly isolated cells were compared, the epidermal residue after cell suspension filtration was analyzed histologically, and the expression of cytokeratin 14 (CK14) and Melan-A was detected by flow cytometry. After cultivation, keratinocytes and melanocytes were further examined for marker expression and proliferation. A coculture model of melanocytes and HaCaT cells was used to evaluate melanin transfer. Results: The yield, viability of total cells and expression of the keratinocyte marker CK14 were similar for freshly isolated cells from both protocols. No differences were observed in the histologic analysis of epidermal residues. Moreover, no differences in keratinocyte marker expression or melanocyte melanin transfer function were observed after culture. However, melanocytes generated using the TrypLE protocol exhibited increased Melan-A expression and proliferation in culture. Conclusion: Our TrypLE protocol not only solved the problems of insufficient cell yield and viability in previous studies but also preserved normal cell morphology and function, which enables the clinical treatment of depigmentation diseases.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 731-738, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948282

ABSTRACT

Objective: To explore the effects of microRNA-342-3p/Mg2+Mn2+-dependent protein phosphatase 1E (miR-342-3p/PPM1E) on the proliferation, migration, and invasion of clear cell renal cell carcinoma (ccRCC) cells. Methods: The gene chips GSE12105, GSE23085, GSE66271, and GSE66270 were searched, and the relationship between miR-342-3p, PPM1E, and the clinical malignant phenotypes of ccRCC was analyzed. ACHN and 769-P cells were transfected with miR-342-3p inhibitor. The effects of miR-342-3p on cell proliferation, migration, and invasion were examined. ACHN cell line with stable and high expression of miR-342-3p was constructed, and the tumorigenicity of the cell line in BALB/c nude mice was observed. The targeted relationship between miR-342-3p and PPM1E was verified by dual-luciferase reporter gene assay. The cells were transfected with miR-342-3p mimic and pcDNA-PPM1E plasmids to observe whether PPM1E could reverse the effects of miR-342-3p overexpression on the proliferation, migration, and invasion of the cells. Results: The expression of miR-342-3p was upregulated in ccRCC, and there were significant differences among patients with tumors of different T stages and G stages and those with different prognoses (P<0.05). The overall survival in the miR-342-3p high-expression group was significantly shorter than that in the low-expression group (P<0.05). Compared with those in the miR-NC group, the miR-342-3p level was significantly downregulated in the inhibitor group, and the cell proliferation ability and the numbers of migrating and invading cells were also significantly decreased (P<0.05). Compared with the miR-NC group, miR-342-3p group had significantly increased volume and mass of tumor tissues and miR-342-3p level, but significantly decreased level of PPM1E mRNA (P<0.05). The expression of PPM1E was downregulated in ccRCC, and there were significant differences among patients with tumors of different M stages, N stages, and G stages, and different recurrence statuses (P<0.05). The miR-342-3p could inhibit the expression of PPM1E in a targeted way. Compared with the miR-NC group, the miR-342-3p group had significantly increased cell proliferation ability and increased numbers of migrating and invading cells (P<0.05). However, PPM1E could reverse the promotion effect of miR-342-3p mimic on ccRCC cells (P<0.05). Conclusion: The miR-342-3p can inhibit PPM1E expression in a targeted way, and thus promotes the proliferation, migration, and invasion of ccRCC cells.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Mice, Inbred BALB C , Mice, Nude , MicroRNAs , Neoplasm Invasiveness , Protein Phosphatase 2C , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Proliferation/genetics , Cell Movement/genetics , Humans , Animals , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Cell Line, Tumor
17.
World J Hepatol ; 16(6): 932-950, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948436

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a primary contributor to cancer-related mortality on a global scale. However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs are emerging markers for HCC diagnosis, prognosis, and therapeutic target. No study of LINC01767 in HCC was published. AIM: To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time. METHODS: DESeq2 Package was used to analyze different gene expressions. Receiver operating characteristic curves assessed the diagnostic performance. Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis. The least absolute shrinkage and selection operator (LASSO)-Cox was used to identify the prediction model. Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction, next generation sequencing was performed following LINC01767 over expression (GSE243371), and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out. In vitro experiment in Huh7 cell was carried out. RESULTS: LINC01767 was down-regulated in HCC with a log fold change = 1.575 and was positively correlated with the cancer stemness. LINC01767 was a good diagnostic marker with area under the curve (AUC) [0.801, 95% confidence interval (CI): 0.751-0.852, P = 0.0106] and an independent predictor for overall survival (OS) with hazard ratio = 1.899 (95%CI: 1.01-3.58, P = 0.048). LINC01767 nomogram model showed a satisfied performance. The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways. LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC > 0.75. LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line; the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro. CONCLUSION: LINC01767 was an important tumor suppressor gene in HCC with good diagnostic and prognostic performance.

18.
Cancer Manag Res ; 16: 703-710, 2024.
Article in English | MEDLINE | ID: mdl-38948682

ABSTRACT

Purpose: To explore the effect of DSG2 on the growth of cervical cancer cells and its possible regulatory mechanism. Methods: The expression levels and survival prognosis of DSG2 and ADAM17 in cervical squamous cell carcinoma tissues and adjacent normal tissues were analyzed by bioinformatics. CCK-8 assay, colony formation assay and Transwell assay were used to detect the effects of DSG2 on the proliferative activity, colony formation ability and migration ability of SiHa and Hela cells. The effect of DSG 2 on the level of ADAM17 transcription and translation was detected by qPCR and Western blot experiments. The interaction between DSG2 and c-MYC was detected by immunocoprecipitation. c-MYC inhibitors were used in HeLa cells overexpressing DSG2 to analyze the effects of DSG2 and c-MYC on proliferation, colony formation and migration of Hela cells, as well as the regulation of ADAM17 expression. Results: DSG2 was highly expressed in cervical squamous cell carcinoma compared with normal tissues (P<0.05), and high DSG2 expression suggested poor overall survival (P<0.05). After DSG2 knockdown, the proliferative activity, colony formation and migration ability of SiHa and Hela cells were significantly decreased (P<0.05). Compared with adjacent normal tissues, ADAM17 was highly expressed in cervical squamous cell carcinoma (P<0.05), and high ADAM17 expression suggested poor overall survival in cervical cancer patients (P<0.05). The results of immunocoprecipitation showed the interaction between DSG2 and c-MYC. Compared with DSG2 overexpression group, DSG2 overexpression combined with c-MYC inhibition group significantly decreased cell proliferation, migration and ADAM17 expression (P < 0.05). Conclusion: DSG2 is highly expressed in cervical cancer, and inhibition of DSG2 expression can reduce the proliferation and migration ability of cervical cancer cells, which may be related to the regulation of ADAM17 expression through c-MYC interaction.

19.
ACS Appl Bio Mater ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950150

ABSTRACT

Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment). On top of that, food spoilage from fungal activity is a major issue, with food losses exceeding 30% annually. In this study, the effect of the surface micro- and nanotopography, material (aluminum, Al, and poly(methyl methacrylate), PMMA), and wettability against Aspergillus awamori is investigated. The fungal activity is monitored using dynamic conditions by immersing the surfaces inside fungal spore-containing suspensions and measuring the fungal biomass growth, while the surfaces with the optimum antifungal properties are also evaluated by placing them near spore suspensions of A. awamori on agar plates. Al- and PMMA-based superhydrophobic surfaces demonstrate a passive-like antifungal profile, and the fungal growth is significantly reduced (1.6-2.2 times lower biomass). On the other hand, superhydrophilic PMMA surfaces enhance fungal proliferation, resulting in a 2.6 times higher fungal total dry weight. In addition, superhydrophobic surfaces of both materials exhibit antifouling and antiadhesive properties, whereas both superhydrophobic surfaces also create an "inhibition" zone against the growth of A. awamori when tested on agar plates.

20.
Article in English | MEDLINE | ID: mdl-38951991

ABSTRACT

Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis. In vitro, biocompatibility and osteogenic potential were assessed using Saos-2 human osteosarcoma cells. Cell viability, migration, and proliferation were evaluated using MTT and scratch assays. In vivo performance was assessed in a rat model, and FSHA was compared to a commercial xenograft (Osseograft) and ungrafted controls. Histological analysis was performed at 8-week post-implantation to quantify new bone formation. FTIR confirmed the purity and homogeneity of FSHA. In vitro, FSHA enhanced Saos-2 viability, migration, and proliferation compared to controls. In vivo, FSHA demonstrated superior bone regeneration compared to Osseograft and ungrafted sites, with balanced graft resorption and new bone formation. Histological analysis revealed an active incorporation of FSHA into new bone, with minimal gaps and ongoing remodeling. Approximately 50%-60% of FSHA was resorbed by 8 weeks, closely matching the rate of new bone deposition. FSHA stimulated more bone formation in the apical socket region than in coronal areas. In conclusion, FSHA is a promising biomaterial for alveolar ridge preservation, exhibiting excellent biocompatibility, osteogenic potential, and balanced resorption. Its ability to promote robust bone regeneration highlights its potential as an effective alternative to currently used graft materials in socket preservation procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...