Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Parasites Hosts Dis ; 62(2): 205-216, 2024 May.
Article in English | MEDLINE | ID: mdl-38835261

ABSTRACT

Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-µ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-µ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 µm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 µm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1µm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.


Subject(s)
Clonorchis sinensis , Glutathione Transferase , Intramolecular Oxidoreductases , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Clonorchis sinensis/enzymology , Clonorchis sinensis/genetics , Animals , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Lipocalins/metabolism , Lipocalins/genetics , Lipocalins/chemistry , Lipocalins/immunology , Escherichia coli/genetics , Prostaglandin H2/metabolism , Prostaglandin H2/chemistry , Kinetics
2.
J Affect Disord ; 359: 241-252, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768820

ABSTRACT

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.


Subject(s)
Astrocytes , Atrophy , Depression, Postpartum , Disease Models, Animal , Prostaglandin D2 , Signal Transduction , Animals , Astrocytes/pathology , Astrocytes/metabolism , Female , Depression, Postpartum/pathology , Depression, Postpartum/metabolism , Mice , Signal Transduction/physiology , Prostaglandin D2/metabolism , Central Amygdaloid Nucleus/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipocalins/genetics , Lipocalins/metabolism , src-Family Kinases/metabolism , Mice, Knockout
3.
J Allergy Clin Immunol Pract ; 12(6): 1594-1602.e9, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580206

ABSTRACT

BACKGROUND: US-based perioperative anaphylaxis (POA) studies are limited to single-center experiences. A recent report found that a serum acute tryptase (sAT) >9.8 ng/mL or mast cell activation (MCA) can predict POA causal agent identification. Urinary mast cell mediator metabolites (uMC) have not been studied in POA. OBJECTIVE: To analyze the epidemiologic data of POA, to determine if sAT or MCA can predict suspected causal agent identification, and to evaluate uMC utility in POA. METHODS: This study is a retrospective multicenter review of POA cases that were subcategorized by suspected causal agent identification status. sAT, MCA (defined as sAT >2 + 1.2 × serum baseline tryptase), and uMC (N-methylhistamine [N-MH], 11ß-prostaglandin-F2α [11ß-PGF2α], leukotriene E4 [LTE4]) were recorded. RESULTS: Of 100 patients (mean age 52 [standard deviation 17] years, 94% adult, 50% female, 90% White, and 2% Hispanic) with POA, 73% had an sAT available, 41% had MCA, 16% had uMC available, and 50% had an identifiable suspected cause. POA cases with an identifiable suspected cause had a positive MCA status (100% vs 78%; P = .01) compared with POA with an unidentifiable cause. An elevated median sAT did not predict causal agent identification. Positive uMC were not associated with suspected causal agent identification during POA. Patients with positive uMC had a higher median sAT (30 vs 6.45 ng/mL; P = .001) and MCA status (96% vs 12%; P = .001) compared with negative uMC patients. Patients with POA had an elevated acute/baseline uMC ratios: 11ß-PGF2α ratio > 1.6, N-MH ratio >1.7, and LTE4 ratio >1.8. CONCLUSIONS: The presence of MCA in POA is associated with suspected causal agent identification. Positive uMC possibly correlate with a higher sAT level and MCA status but require further study. The authors suggest applying an acute/baseline uMC ratio (11ß-PGF2α ratio >1.6, N-MH ratio >1.7, and LTE4 ratio >1.87) in patients with POA for MCA when a tryptase level is inconclusive during POA evaluations.


Subject(s)
Anaphylaxis , Perioperative Period , Tryptases , Humans , Anaphylaxis/epidemiology , Anaphylaxis/diagnosis , Female , Retrospective Studies , Male , Middle Aged , Tryptases/blood , Adult , United States/epidemiology , Aged , Mast Cells/immunology
4.
J Clin Med ; 13(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38610815

ABSTRACT

Background: Previous studies found high but very variable levels of tetranor-PGEM and PGDM (urine metabolites of prostaglandin (PG) E2 and PGD2, respectively) in persons with cystic fibrosis (pwCF). This study aims to assess the role of cyclooxygenase COX-1 and COX-2 genetic polymorphisms in PG production and of PG metabolites as potential markers of symptoms' severity and imaging findings. Methods: A total of 30 healthy subjects and 103 pwCF were included in this study. Clinical and radiological CF severity was evaluated using clinical scoring methods and chest computed tomography (CT), respectively. Urine metabolites were measured using liquid chromatography/tandem mass spectrometry. Variants in the COX-1 gene (PTGS1 639 C>A, PTGS1 762+14delA and COX-2 gene: PTGS2-899G>C (-765G>C) and PTGS2 (8473T>C) were also analyzed. Results: PGE-M and PGD-M urine concentrations were significantly higher in pwCF than in controls. There were also statistically significant differences between clinically mild and moderate disease and severe disease. Patients with bronchiectasis and/or air trapping had higher PGE-M levels than patients without these complications. The four polymorphisms did not associate with clinical severity, air trapping, bronchiectasis, or urinary PG levels. Conclusions: These results suggest that urinary PG level testing can be used as a biomarker of CF severity. COX genetic polymorphisms are not involved in the variability of PG production.

5.
Int Arch Allergy Immunol ; : 1-9, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599205

ABSTRACT

INTRODUCTION: Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS: Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS: AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION: CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.

6.
FEBS Open Bio ; 14(5): 726-739, 2024 May.
Article in English | MEDLINE | ID: mdl-38514457

ABSTRACT

Taenia solium can cause human taeniasis and/or cysticercosis. The latter can in some instances cause human neurocysticercosis which is considered a priority in disease-control strategies and the prevention of mental health problems. Glutathione transferases are crucial for the establishment and long-term survival of T. solium; therefore, we structurally analyzed the 24-kDa glutathione transferase gene (Ts24gst) of T. solium and biochemically characterized its product. The gene promoter showed potential binding sites for transcription factors and xenobiotic regulatory elements. The gene consists of a transcription start site, four exons split by three introns, and a polyadenylation site. The gene architecture is conserved in cestodes. Recombinant Ts24GST (rTs24GST) was active and dimeric. Anti-rTs24GST serum showed slight cross-reactivity with human sigma-class GST. A 3D model of Ts24GST enabled identification of putative residues involved in interactions of the G-site with GSH and of the H-site with CDNB and prostaglandin D2. Furthermore, rTs24GST showed optimal activity at 45 °C and pH 9, as well as high structural stability in a wide range of temperatures and pHs. These results contribute to the better understanding of this parasite and the efforts directed to fight taeniasis/cysticercosis.


Subject(s)
Glutathione Transferase , Taenia solium , Taenia solium/genetics , Taenia solium/enzymology , Animals , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Humans , Models, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Promoter Regions, Genetic/genetics
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339125

ABSTRACT

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Subject(s)
Cardiomyopathies , Intramolecular Oxidoreductases , Lipocalins , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Disease Models, Animal , Mast Cells/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Myocardium/metabolism , Pericytes/metabolism
8.
Curr Allergy Asthma Rep ; 24(2): 73-80, 2024 02.
Article in English | MEDLINE | ID: mdl-38217825

ABSTRACT

PURPOSE OF REVIEW: Aspirin-exacerbated respiratory disease (AERD) is a syndrome of high type 2 inflammation and is known to critically involve mast cell activation. The mast cell is an important cell in the baseline inflammatory processes in the upper and lower airway by maintaining and amplifying type 2 inflammation. But it also is prominent in the hypersensitivity reaction to COX-1 inhibition which defines this condition. RECENT FINDINGS: Recent work highlights the mast cell as a focal point in AERD pathogenesis. Using AERD as a specific model of both high type 2 asthma and chronic sinusitis, the role of mast cell activity can be better understood in other aspects of airway inflammation. Further dissecting out the mechanism of COX-1-mediated mast cell activation in AERD will be an important next phase in our understanding of NSAID-induced hypersensitivity as well as AERD pathophysiology.


Subject(s)
Asthma, Aspirin-Induced , Nasal Polyps , Sinusitis , Humans , Mast Cells/pathology , Sinusitis/chemically induced , Sinusitis/pathology , Inflammation/pathology , Aspirin/adverse effects
9.
Int Immunopharmacol ; 129: 111526, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38295545

ABSTRACT

Staphylococcus aureus (S. aureus) is one of the most infamous and widespread bacterial pathogens, causing a hard-to-estimate number of uncomplicated skin infections and probably hundreds of thousands to millions of more severe, invasive infections globally per year. S. aureus may also be acquired from animals, especially in the livestock industry. The interaction mechanism of host and S. aureus has significance for finding ways to against S. aureus infection and control inflammatory response of host, while the molecular biological activities after S. aureus infection, particular in inflammatory and immune cells are not fully clear. The present study aimed to explore whether pattern recognition receptors (PRRs) mediate prostaglandin D2 (PGD2) synthesis and PGD2 participates in the regulation of inflammatory response in macrophages during S. aureus infection or synthetic bacterial lipopeptide (Pam2CSK4) stimulation. PGD2 secretion level was enhanced by mice peritoneal macrophages infected with the S. aureus. The results indicated that PGD2 secretion was impaired in S. aureus infected-macrophages from toll-like receptors 2 (TLR2)-deficient and NLR pyrin domain-containing 3 (NLRP3)-deficient mice. PGD2 synthetase (hematopoietic PGD synthase, HPGDS) inhibitors could reduce the activation of macrophage mitogen-activated protein kinase (MAPK)/nuclear factor-κ-gene binding (NF-κB) signaling pathways. HPGDS inhibition impaired cytokines (TNF-α, IL-1ß, IL-10 and RANTES) secretion and macrophage phagocytosis during S. aureus infection. In addition, inhibition of endogenous PGD2 synthesis was unable to affect the TLR2 and NLRP3 expression in S. aureus-infected macrophages. Taken together, macrophage PGD2 secretion after S. aureus infection depended on receptors TLR2 and NLRP3, and the induced PGD2 participated in the regulation of inflammatory response in S. aureus-infected macrophages. Interestingly, it was found that exogenous PGD2 down-regulated the cytokines secretion and had no effect on phagocytosis in the S. aureus-infected macrophages.


Subject(s)
Staphylococcus aureus , Toll-Like Receptor 2 , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages , NF-kappa B/metabolism , Cytokines/metabolism
10.
Front Cell Dev Biol ; 11: 1256998, 2023.
Article in English | MEDLINE | ID: mdl-38099292

ABSTRACT

D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.

11.
Front Immunol ; 14: 1276852, 2023.
Article in English | MEDLINE | ID: mdl-37942331

ABSTRACT

Introduction: The intestinal barrier plays a crucial role in distinguishing foods from toxins. Prostaglandin D2 (PGD2) is one of the lipid-derived autacoids synthesized from cell membrane-derived arachidonic acid. We previously reported that pharmacological stimulation of PGD2 receptor, D prostanoid 1 (DP1) attenuated the symptoms of azoxymethane/dextran sodium sulfate-induced colitis and ovalbumin-induced food allergy in mouse models. These observations suggested that DP1 stimulation protects the intestinal barrier. The present study aimed to uncover the effects of DP1 stimulation on intestinal barrier function and elucidate the underlying mechanisms. Materials and methods: Intestinal permeability was assessed in mice by measuring the transfer of orally administered fluorescein isothiocyanate-dextran (40 kDa) into the blood. The DP1 agonist BW245C (1 mg/kg) was administered 10 min prior to dextran administration. The intestinal permeability was confirmed using the ex vivo everted sac method. Tight junction integrity was evaluated in vitro by measuring the transepithelial electrical resistance (TER) in the human intestinal epithelial cell line Caco-2. Mucus secretion was assessed by observing Alcian Blue-stained intestinal sections. Results: Pharmacological DP1 stimulation reduced intestinal permeability both in vivo and ex vivo. Immunohistochemical staining showed that DP1 was strongly expressed on the apical side of the epithelial cells. DP1 stimulation did not affect TER in vitro but induced mucus secretion from goblet cells. Mucus removal by a mucolytic agent N-acetyl-l-cysteine canceled the inhibition of intestinal permeability by DP1 stimulation. Conclusion: These observations suggest that pharmacological DP1 stimulation decreases intestinal permeability by stimulating mucus secretion.


Subject(s)
Dextrans , Prostaglandins , Humans , Animals , Mice , Prostaglandin D2/metabolism , Caco-2 Cells , Mucus/metabolism , Permeability
12.
J Genet Eng Biotechnol ; 21(1): 113, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947895

ABSTRACT

BACKGROUND: Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the integral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high binding affinity to the protein targets. RESULTS: Five compounds were identified after rigorous and precise molecular screening namely (-)-epicatechin, chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-rutinoside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action inhibition. CONCLUSION: These findings suggest that these compounds could be explored as triple-action inhibitors of the protein targets. They are, therefore, recommended for further analysis.

13.
Cell ; 186(25): 5500-5516.e21, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38016470

ABSTRACT

Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.


Subject(s)
Sleep Deprivation , Animals , Mice , Cytokines/metabolism , Inflammation , Prostaglandin D2 , Sleep/physiology , Sleep Deprivation/genetics , Sleep Deprivation/metabolism , Syndrome , Humans , Rats , Cell Line , Cyclonic Storms , Neutrophils/metabolism
14.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37895951

ABSTRACT

Recently, a G-protein coupled receptor 44 (GPR44) was discovered to play a significant role in the process of inflammation-related diseases, including cancer and diabetes. However, the precise role of GPR44 has yet to be fully elucidated. Currently, there is a strong and urgent need for the development of GPR44 radiotracers as a non-invasive methodology to explore the exact mechanism of GPR44 on inflammation-related diseases and monitor the progress of therapy. TM-30089 is a potent GPR44 antagonist that exhibits a high specificity and selectivity for GPR44. Its structure contains a fluorine nuclide, which could potentially be replaced with 18F. In the present study, we successfully took a highly effective synthesis strategy that pretreated the unprotected carboxylic acid group of the precursor and developed a feasible one-step automatic radiosynthesis strategy for [18F]TM-30089 with a high radiochemical purity and a good radiochemical yield. We further evaluated this radiotracer using mice models implanted with 1.1 B4 cell lines (GPR44-enriched cell lines) and human islets (high GPR44 expression), respectively. The results revealed the persistent and specific uptake of [18F]TM-30089 in GPR44 region, indicating that [18F]TM-30089 is a promising candidate for targeting GPR44. Further evaluation is ongoing.

15.
Prostaglandins Other Lipid Mediat ; 169: 106772, 2023 12.
Article in English | MEDLINE | ID: mdl-37669705

ABSTRACT

Prostaglandin D2 (PGD2) synthesis is closely associated with the innate immune response mediated by pattern recognition receptors (PPRs). We determined PGD2 synthesis whether mediated by Toll-like receptor 2 (TLR2), TLR4 and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) in Escherichia coli (E. coli)-, lipopolysaccharide (LPS)- and Braun lipoprotein (BLP)-stimulated macrophages. Our data demonstrate that TLR2, TLR4, and NLRP3 could regulate the synthesis of PGD2 through cyclo-oxygenase-2 (COX-2) and hematopoietic PGD synthase (H-PGDS) in E. coli-, LPS- or BLP-stimulated macrophages, suggesting that TLR2, TLR4, and NLRP3 are critical in regulating PGD2 secretion by controlling PGD2 synthetase expression in E. coli-, LPS- or BLP-stimulated macrophages. The H-PGDS (a PGD2 specific synthase) inhibitor pre-treatment could down-regulate the secretion of TNF-α, RANTES and IL-10 in LPS- and E. coli-stimulated macrophage. Meanwhile, H-PGDS inhibitor could down-regulate the secretion of TNF-α, while up-regulated RANTES and IL-10 secretion in BLP-stimulated macrophages, suggesting that PGD2 could regulate the secretion of cytokines and chemokines in E. coli-, LPS- or BLP-stimulated macrophages. Furthermore, exogenous PGD2 regulates the secretion of cytokines and chemokines through activation of MAPK and NF-κB signaling pathways after E. coli-, LPS- or BLP stimulation in macrophages. Taken together, PGD2 is found able to regulate E. coli-induced inflammatory responses through TLR2, TLR4, and NLRP3 in macrophages.


Subject(s)
Escherichia coli , Toll-Like Receptor 2 , Toll-Like Receptor 2/metabolism , Escherichia coli/metabolism , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Prostaglandins/metabolism , Macrophages/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Chemokines/metabolism
16.
J Lipid Res ; 64(10): 100439, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666361

ABSTRACT

Normal angiogenesis is essential for retinal development and maintenance of visual function in the eye, and its abnormality can cause retinopathy and other eye diseases. Prostaglandin D2 is an anti-angiogenic lipid mediator produced by lipocalin-type PGD synthase (L-PGDS) or hematopoietic PGD synthase (H-PGDS). However, the exact role of these PGD synthases remains unclear. Therefore, we compared the roles of these synthases in murine retinal angiogenesis under physiological and pathological conditions. On postnatal day (P) 8, the WT murine retina was covered with an elongated vessel. L-PGDS deficiency, but not H-PGDS, reduced the physiological vessel elongation with sprouts increase. L-PGDS expression was observed in endothelial cells and neural cells. In vitro, L-PGDS inhibition increased the hypoxia-induced vascular endothelial growth factor expression in isolated endothelial cells, inhibited by a prostaglandin D2 metabolite, 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2) treatment. Pericyte depletion, using antiplatelet-derived growth factor receptor-ß antibody, caused retinal hemorrhage with vessel elongation impairment and macrophage infiltration in the WT P8 retina. H-PGDS deficiency promoted hemorrhage but inhibited the impairment of vessel elongation, while L-PGDS did not. In the pericyte-depleted WT retina, H-PGDS was expressed in the infiltrated macrophages. Deficiency of the D prostanoid receptor also inhibited the vessel elongation impairment. These results suggest the endogenous role of L-PGDS signaling in physiological angiogenesis and that of H-PGDS/D prostanoid 1 signaling in pathological angiogenesis.

17.
Article in English | MEDLINE | ID: mdl-37526190

ABSTRACT

BACKGROUND: Prostaglandin D2 (PGD2) has been shown to restrict the occurrence and development of multiple cancers; nevertheless, its underlying molecular mechanism has not been fully elucidated. The present study investigated the effect of PGD2 on the biological function of the enriched gastric cancer stem cells (GCSCs), as well as its underlying molecular mechanism, to provide a theoretical basis and potential therapeutic drugs for gastric cancer (GC) treatment. METHODS: The plasma PGD2 levels were detected by Enzyme-linked immunosorbent assay (ELISA). Silencing of lipocalin prostaglandin D synthetases (L-PTGDS) and prostaglandin D2 receptor 2 (PTGDR2) was carried out in GCSCs from SGC-7901 and HGC-27 cell lines. Cell Counting Kit-8, transwell, flow cytometry, and western blotting assays were used to determine cell viability, invasion, apoptosis, and stemness of GCSCs. In vivo xenograft models were used to assess tumor growth. RESULTS: Clinically, it was found that the plasma PGD2 level decreased significantly in patients with GC. PGD2 suppressed viability, invasion, and stemness and increased the apoptosis of GCSCs. Downregulating L-PTGDS and PTGDR2 promoted viability, invasion, and stemness and reduced the apoptosis of GCSCs. Moreover, the inhibition of GCSCs induced by PGD2 was eliminated by downregulating the expression of PTGDR2. The results of in vivo experiments were consistent with those of in vitro experiments. CONCLUSION: Our data suggest that PGD2 may be an important marker and potential therapeutic target in the clinical management of GC. L-PTGDS/PTGDR2 may be one of the critical targets for GC therapy. The PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of GCSCs and prevents the progression of GC.

18.
Molecules ; 28(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570903

ABSTRACT

Human hematopoietic prostaglandin D2 synthase (HPGDS) is involved in the production of prostaglandin D2, which participates in various physiological processes, including inflammation, allergic reactions, and sleep regulation. Inhibitors of HPGDS have been investigated as potential anti-inflammatory agents. For the investigation of potent HPGDS inhibitors, we carried out a computational modeling study combining molecular docking and molecular dynamics simulation for selecting and virtual confirming the designed binders. We selected the structure of HPGDS (PDB ID: 2CVD) carrying its native inhibitor compound HQL as our research target. The random 5-mer peptide library was created by building the 3-D structure of random peptides using Rosetta Buildpeptide and performing conformational optimization. Molecular docking was carried out by accommodating the peptides into the location of their native binder and then conducting docking using FlexPepDock. The two peptides RMYYY and VMYMI, which display the lowest binding energy against HPGDS, were selected to perform a comparative study. The interaction of RMYYY and VMYMI against HPGDS was further confirmed using molecular dynamics simulation and aligned with its native binder, HQL. We show the selected binders to have stronger binding energy and more frequent interactions against HPGDS than HQL. In addition, we analyzed the solubility, hydrophobicity, charge, and bioactivity of the generated peptides, and we show that the selected strong binder may be further used as therapeutic drugs.


Subject(s)
Computer-Aided Design , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Peptides/pharmacology , Computers
20.
Adv Pharmacol ; 97: 423-444, 2023.
Article in English | MEDLINE | ID: mdl-37236766

ABSTRACT

Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyp formation, adult-onset asthma, and hypersensitivity to all cyclooxygenase-1 (COX-1) inhibitors. Oxygenated lipids are collectively known as oxylipins and are polyunsaturated fatty acids (PUFA) oxidation products. The most extensively researched oxylipins being the eicosanoids formed from arachidonic acid (AA). There are four major classes of eicosanoids including leukotrienes, prostaglandins, thromboxanes, and lipoxins. In N-ERD, the underlying inflammatory process of the upper and lower respiratory systems begins and occurs independently of NSAID consumption and is due to the overproduction of cysteinyl leukotrienes. Leukotriene mediators all induce edema, bronchoconstriction, and airway mucous secretion. Thromboxane A2 is a potent bronchoconstrictor and induces endothelial adhesion molecule expression. Elevated Prostaglandin D2 metabolites lead to vasoconstriction, additionally impaired up-regulation of prostaglandin E2 leads to symptoms seen in N-ERD as it is essential for maintaining homeostasis of inflammatory responses in the airway and has bronchoprotective and anti-inflammatory effects. A characteristic feature of N-ERD is diminished lipoxin levels, this decreased capacity to form endogenous mediators with anti-inflammatory properties could facilitate local inflammatory response and expose bronchial smooth muscle to relatively unopposed actions of broncho-constricting substances. Treatment options, such as leukotriene modifying agents, aspirin desensitization, biologic agents and ESS, appear to influence eicosanoid pathways, however more studies need to be done to further understand the role of oxylipins. Besides AA-derived eicosanoids, other oxylipins may also pay a role but have not been sufficiently studied. Identifying pathogenic N-ERD mechanism is likely to define more effective treatment targets.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Respiratory Tract Diseases , Adult , Humans , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/therapeutic use , Oxylipins/therapeutic use , Leukotrienes/metabolism , Leukotrienes/therapeutic use , Eicosanoids/metabolism , Eicosanoids/therapeutic use , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/drug therapy , Prostaglandins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...