Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
J Zhejiang Univ Sci B ; 25(7): 541-556, 2024 Jul 15.
Article in English, Chinese | MEDLINE | ID: mdl-39011675

ABSTRACT

The protein kinase B (Akt) pathway can regulate the growth, proliferation, and metabolism of tumor cells and stem cells through the activation of multiple downstream target genes, thus affecting the development and treatment of a range of diseases. Thioesterase superfamily member 4 (THEM4), a member of the thioesterase superfamily, is one of the Akt kinase-binding proteins. Some studies on the mechanism of cancers and other diseases have shown that THEM4 binds to Akt to regulate its phosphorylation. Initially, THEM4 was considered an endogenous inhibitor of Akt, which can inhibit the phosphorylation of Akt in diseases such as lung cancer, pancreatic cancer, and liver cancer, but subsequently, THEM4 was shown to promote the proliferation of tumor cells by positively regulating Akt activity in breast cancer and nasopharyngeal carcinoma, which contradicts previous findings. Considering these two distinct views, this review summarizes the important roles of THEM4 in the Akt pathway, focusing on THEM4 as an Akt-binding protein and its regulatory relationship with Akt phosphorylation in various diseases, especially cancer. This work provides a better understanding of the roles of THEM4 combined with Akt in the treatment of diseases.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Neoplasms/metabolism , Cell Proliferation , Animals , Breast Neoplasms/metabolism , Female , Adaptor Proteins, Signal Transducing
2.
IUBMB Life ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738523

ABSTRACT

Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3ß levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.

3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621909

ABSTRACT

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Subject(s)
Brain Ischemia , Panax notoginseng , Peptide Fragments , Receptors, Platelet-Derived Growth Factor , Saponins , Triterpenes , Rats , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Endothelial Cells/metabolism , von Willebrand Factor , Angiogenesis , Network Pharmacology , Rats, Sprague-Dawley , Saponins/pharmacology , Brain Ischemia/drug therapy , Cerebral Infarction
4.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38480001

ABSTRACT

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Subject(s)
Glycogen Synthase Kinase 3 beta , Hydrogen Peroxide , Oxidative Stress , Phloroglucinol , Proto-Oncogene Proteins c-akt , Signal Transduction , beta Catenin , Humans , Phloroglucinol/pharmacology , Phloroglucinol/analogs & derivatives , Oxidative Stress/drug effects , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/drug effects , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/cytology , Dermis/cytology , Dermis/metabolism , Dermis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Alopecia/drug therapy , Alopecia/metabolism
5.
Physiol Rep ; 12(1): e15913, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38185480

ABSTRACT

Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.


Subject(s)
Heat Stress Disorders , Proto-Oncogene Proteins c-akt , Male , Rats , Animals , Rats, Wistar , Signal Transduction , TOR Serine-Threonine Kinases , HSP72 Heat-Shock Proteins , Muscle, Skeletal
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016461

ABSTRACT

ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013596

ABSTRACT

Aim To investigate the effect of ellagic acid (EA) on cognitive function in APP/PS 1 double- transgenic mice, and to explore the regulatory mechanism of ellagic acid on the level of oxidative stress in the hippocampus of double-transgenic mice based on the phosphatidylinositol 3-kinase/protein kinase B/glycogen synthase kinase-3 (PI3K/AKT/GSK-3 β) signaling pathway. Methods Thirty-two SPF-grade 6-month-old APP/PS 1 double transgenic mice were randomly divided into four groups, namely, APP/PS 1 group, APP/PS1 + EA group, APP/PS1 + LY294002 group, APP/PS 1 + EA + LY294002 group, with eight mice in each group, and eight SPF-grade C57BL/6J wild type mice ( Wild type) were selected as the blank control group. The APP/PS 1 + EA group was given 50 mg · kg

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013339

ABSTRACT

ObjectiveExploring the role of microRNA126 (miRNA126) in chronic kidney disease combined with atherosclerosis (CKD AS) by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and the mechanism of Shenshuai Xiezhuo decoction in the intervention of CKD AS rats with 5/6 nephrectomy combined with high-fat feeding. MethodA total of 60 SD rats were randomly divided into sham operation group, model group, losartan group, and low, medium, and high dose groups of Shenshuai Xiezhuo decoction. The CKD AS rat model was established by 5/6 nephrectomy combined with high-fat feeding for 10 weeks. The low, medium, and high dose groups (6.0, 12.0, 24.0 g·kg-1·d-1) of Shenshuai Xiezhuo decoction and the losartan group (20 mg·kg-1·d-1) were gavaged, and the corresponding intervention was carried out for eight weeks. Then, the rats were killed, and samples were collected for corresponding detection. Fully automated biochemical analyzers were used to detect kidney function and blood lipids in rats: blood creatinine (SCr), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Hematoxylin-eosin (HE) and Masson staining of aortic tissue and pathological observation under a light microscope were carried out, and autophagosomes and autophagy lysosomes were observed by transmission electron microscopy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to determine the mRNA levels of miRNA126, PI3K, Akt, and mTOR in rats, and Western blot was used to determine the protein expression levels of phosphorylated (p)-PI3K, PI3K, p-Akt, Akt, p -mTOR, mTOR, benzyl chloride 1 (Beclin-1), and microtubule-associated protein light chain 3Ⅱ/Ⅰ (LC3Ⅱ/LC3Ⅰ). ResultCompared with the sham operation group, the serum SCr, BUN, TC, TG, and LDL-C in the model group were significantly increased (P<0.01). Compared with the model group, the SCr, BUN, TC, TG, and LDL-C were decreased in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction (P<0.05). Compared with the sham operation group, thickening plaques, infiltration of mononuclear macrophages, a small number of foam cells, disordered arrangement of smooth muscle fibers in the tunica media, and increased collagen fibers were observed in the model group, and the lesions in the losartan group and Shenshuai Xiezhuo decoction groups were alleviated compared with those in the model group. Compared with the model group, the number of autophagosomes and autophagy lysosomes increased in the medium and high dose groups of Shenshuai Xiezhuo decoction. Compared with the sham operation group, the expression of miRNA126 in the aortic tissue of the model group was significantly decreased (P<0.01), and the mRNA expressions of PI3K, Akt, and mTOR were significantly increased (P<0.01). Compared with the model group, the expression of miRNA126 in the aortic tissue of rats in high, medium, and low dose groups of Shenshuai Xiezhuo decoction and losartan group was significantly increased (P<0.01), while the mRNA expressions of PI3K, Akt, and mTOR were significantly decreased (P<0.01). Compared with the sham operation group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the model group were significantly increased (P<0.01), while the protein levels of Beclin-1, LC3Ⅰ, and LC3Ⅱ were significantly decreased (P<0.01). Compared with the model group, the protein expressions of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR in the losartan group and low, medium, and high dose groups of Shenshuai Xiezhuo decoction were decreased (P<0.05), while the protein levels of Beclin-1 and LC3Ⅱ/LC3Ⅰ were increased (P<0.05). ConclusionThe expression of miRNA126 is decreased in the aortic tissue of CKD AS rats, and the PI3K/Akt/mTOR pathway is activated to inhibit autophagy flux. Shenshuai Xiezhuo decoction regulates the PI3K/Akt/mTOR signaling pathway through miRNA126, restores the autophagy of aortic endothelial cells, protects the damage of CKD vessels, reduces the formation of As plaques, and slows the development of cardiovascular complications.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012718

ABSTRACT

As one of the most difficult-to-cure neuropsychiatric disorders in clinical practice, schizophrenia is mainly manifested by behavioral abnormalities and multidimensional cognitive dysfunction, and the recurrence rate and disability rate of the disease are increasing year by year, which seriously affects patients' social functioning and quality of life, and even threatens the physical and mental health of the surrounding population. At present, the treatment of schizophrenia is mainly based on antipsychotic drugs combined with psychotherapeutic techniques, which have limited long-term therapeutic effects and a high relapse rate. Traditional Chinese medicine (TCM) boasts the advantages of multi-targets, multi-pathways, multi-links, and multi-levels, and plays a crucial role in the prevention and treatment of schizophrenia and its prognosis. Phosphatidylinositol 3-kinase (PI3K) is widely present in cells and is involved in the regulation of protein synthesis and apoptosis, and the different isoforms of protein kinase B (Akt) are of great significance in cell growth, oxidative stress, neuronal development and other processes. In recent years, a large number of studies have found that the PI3K/Akt signaling pathway is closely related to schizophrenia. Through regulating the PI3K/Akt signaling pathway, TCM monomers and TCM compounds mainly affect key signaling molecules such as mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK), glucose transporter (GLUT) for glucose uptake and transport, and nuclear factor E2-associated factor 2 (Nrf2), which organize the intracellular network of centers and regulate the formation and plasticity of neuronal synapse, and they play an important role in mitigating schizophrenia by regulating the processes of cell proliferation, migration and apoptosis of neurons, and has the advantages of multi-targets, all-encompassing and low toxicity. This article analyzes and explains the mechanism of TCM intervention in the PI3K/Akt signaling pathway against schizophrenia, in order to provide a theoretical basis and reference for the prevention and treatment of schizophrenia by TCM.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011469

ABSTRACT

Cognitive impairment refers to the abnormality of the hippocampus, cortex and other parts of the brain, which is manifested by the decline of cognitive abilities such as learning, memory and attention. With the increase in people's work pressure and bad living habits, the incidence of cognitive impairment is getting higher and higher, which seriously affects people's normal life. However, there are adverse reactions such as gastrointestinal reactions and extrapyramidal reactions in Western drug treatment for cognitive impairment. Therefore, the development of a drug with relatively minimal adverse reactions is of great significance. Traditional Chinese medicine (TCM) has the characteristics of "multi-component, multi-pathway and multi-target", and the incidence of adverse reactions is relatively low. Studies have shown that the pathogenesis of cognitive impairment is closely related to oxidative stress, inflammation, apoptosis, autophagy and other processes of neurons in the cerebral cortex and hippocampus. Phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signal pathway plays an important role in the transmission of intracellular and intracellular signals, and in the regulation of cellular inflammation, apoptosis, autophagy, etc. TCM monomers, TCM extracts, and TCM compounds exert anti-inflammatory, antioxidant, anti-apoptotic and autophagy regulation effects by regulating the PI3K/Akt signaling pathway to improve cognitive impairment. This review first summarized the composition and regulatory process of the PI3K/Akt signaling pathway, and then discussed the research progress on the improvement of cognitive impairment through the improvement of oxidative stress, inflammation, apoptosis and autophagy of neurons. Finally, the recent research status of the regulation of this signaling pathway by TCM extracts, TCM monomers and TCM compounds to improve cognitive impairment was summarized. This study provides a theoretical basis for the future study of new TCM related to cognitive impairment.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003413

ABSTRACT

ObjectiveTo investigate the effect of Tangzhi pills on the improvement of insulin resistance (IR) in the liver with type 2 diabetes (T2DM) by regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway based on differential genes and its possible molecular mechanism. MethodT2DM rat models were prepared by high fat (HFD) diet combined with streptozotocin (STZ) intraperitoneal injection. The experiment was divided into blank group, model group, metformin hydrochloride group (0.18 g·kg-1), Tangzhi pills high (1.08 g·kg-1), medium (0.54 g·kg-1) and low (0.27 g·kg-1) dose groups. Rat serum, liver, and pancreatic tissue were collected, and the pathological tissue of the liver and pancreas was observed using hematoxylin-eosin (HE) staining. The fasting blood glucose level (FBG) was detected, and oral glucose tolerance (OGTT) tests were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect fasting serum insulin (FINS) and glycated hemoglobin (GHb) levels in rats. IR homeostasis model index (HOMA-IR), β cellular homeostasis index (HOMA-β), and insulin sensitivity index (ISI) were calculated. Biochemical methods were used to determine the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) in rat serum. Transcriptomics obtained differentially expressed mRNA from liver tissue and enriched differentially expressed pathways. Real-time reverse transcriptase polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of cyclic adenylate responsive element binding protein 3-like protein 2 antibody (CREB3l2), B-lymphocyte tumor 2 (Bcl-2), Toll-like receptor 2 (TLR2), cyclin-dependent kinase inhibitor 1A (CDNK1A), and DNA damage induced transcription factor 4-like protein (DDIT4) in liver tissue. Western blot was used to detect the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), glucose transporter 4 (GLUT4), insulin receptor (INSR), and insulin receptor substrate 2 (IRS2). ResultThe pharmacodynamic experiment results showed that compared with model group, Tangzhi pills groups repaired liver and pancreatic tissue to varying degrees, reduced blood sugar (P<0.01), and promoted a decrease in serum FINS, GHb, and HOMA-IR (P<0.05, P<0.01). In addition, HOMA-β and ISI increased (P<0.05, P<0.01). The levels of TC, TG, and LDL-C decreased (P<0.05, P<0.01), while the levels of HDL-C increased (P<0.05, P<0.01). The transcriptomics experimental results confirmed that the PI3K/Akt signaling pathway was significantly expressed in both the blank group and model group, as well as in the high-dose Tangzhi pills group and model group. CDNK1A, DDIT4, CREB3l2, Bcl-2, and TLR2 were significantly differentially expressed mRNA during TG intervention in T2DM. Compared with the model group, the protein expression of p-PI3K, p-Akt, GLUT4, INSR, and IRS2 increased in all Tangzhi pills groups (P<0.01). The mRNA expression of CREB3l2, Bcl-2, and TLR2 increased (P<0.01), while that of CDNK1A and DDIT4 decreased (P<0.01). ConclusionTangzhi pills may regulate the PI3K/Akt signaling pathway based on the differential mRNA expression of CREB3l2, Bcl-2, TLR2, CDNK1A, and DDIT4, thereby improving IR in the liver with T2DM.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006578

ABSTRACT

Cerebral ischemia/reperfusion injury (CIRI) is a complex cascade reaction process in which the blood flow and oxygen supply of brain tissue in the infarcted area recover after cerebral ischemia, resulting in secondary injury of ischemic brain tissue. At present, thrombolysis as soon as possible and restoration of cerebral blood supply are still the only strategies for the treatment of stroke, but a considerable number of patients' symptoms will be more serious after reperfusion, making patients face adverse outcomes such as neurological function injury and even death and seriously affecting the quality of life and safety of patients. Therefore, an in-depth exploration of the mechanism and treatment strategy of CIRI has important clinical significance. The phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the classic anti-apoptosis/reproductive-promoting signal transduction pathways, which is responsible for cell proliferation, growth, and differentiation. It is the key cascade signaling pathway of CIRI, located at the core site in many mechanisms such as mitochondrial disorder, apoptosis, autophagy, oxidative stress, and inflammation. It is closely related to the occurrence and development of CIRI. Traditional Chinese medicine has been used in the clinical treatment of stroke and its complications for thousands of years, and the clinical effect of traditional Chinese medicine in the prevention and treatment of CIRI has been affirmed by a large number of research results in recent years. It is further clarified that the monomers, active components, and their compound prescriptions of traditional Chinese medicine can directly or indirectly regulate the PI3K/Akt signaling pathway by virtue of the biological advantages of multi-targets, multi-components, and multi-pathways and play an overall protective role in CIRI. By analyzing the related research progress of traditional Chinese medicine in China and abroad in recent years, the authors summarized the role and mechanism of regulating the PI3K/Akt signaling pathway in the prevention and treatment of CIRI, so as to provide further theoretical basis for the study of the mechanism of clinical prevention and treatment of CIRI.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1006560

ABSTRACT

ObjectiveTo investigate the promotional effect of astragaloside on the repair and healing of chronic non-healing wounds and its mechanism. MethodA total of 60 male SD rats were constructed with full-layer skin defect wounds on the back, and except for the control (Con) group, the rest were constructed with non-healing wounds, which were then randomly divided into the sham-operation (sham) group, the low-dose astragaloside group, the high-dose astragaloside group, the astragaloside + LY294002 [phosphatidylinositol 3-kinase (PI3K) inhibitor] group, and the astragaloside + EX527 [silencing regulatory protein 1 (SIRT1) inhibitor] group. The percentage of wound area in each group was observed on the 2nd, 4th, 6th, and 8th days after wound molding. Collagen type Ⅰ alpha 1 (COL1A1) and alpha smooth muscle actin (α-SMA) expressions in the wound tissue were detected by immunofluorescence. Hematoxylin and eosin (HE) staining was performed to determine the pathological structure of the wound. The mRNA expression of inflammatory factors in the wound was measured by real-time polymerase chain reaction (Real-time PCR), and the expression of proteins related to the SIRT1/ nuclear factor (NF)-κB and PI3K/protein kinase B (Akt) signaling pathways in the wound was tested by Western blot. ResultCompared with the sham group, the percentage of postoperative wound area of rats in both low-dose and high-dose astragaloside groups gradually decreased with time, and the efficacy of the high-dose astragaloside group was better. Compared with the Con group, the fluorescence intensity of COL1A1 in wound tissue of the sham group decreased, while the expression of α-SMA increased. The epithelial tissue was severely damaged, with an increase in the thickness, and a large number of inflammatory cells were seen in the infiltration. The mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) was elevated. The protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was elevated, while SIRT1 expression was decreased (P<0.05). Compared with the sham group, the fluorescence intensity of COL1A1 and α-SMA increased after astragaloside treatment. The number of epithelial cells increased, and the thickness decreased. The inflammatory cells decreased, and the amount of collagen increased. The mRNA expression of TNF-α, IL-1β, IL-6, and iNOS was decreased, and the protein expression of NF-κB p65, p-PI3K/PI3K, and p-Akt/Akt was decreased. SIRT1 was elevated, and the effect was better in the high-dose astragaloside group (P<0.05). Compared with the high-dose astragaloside group, inhibition of the PI3K/Akt and SIRT1 pathways by LY294002 and EX527 prevented the therapeutic efficacy of astragaloside on chronic non-healing wounds. ConclusionThe topical application of astragaloside significantly promotes the healing of chronic non-healing wounds in rats, and the mechanism may be related to the activation of the PI3K/Akt pathway and the SIRT1/NF-κB pathway.

14.
Chem Pharm Bull (Tokyo) ; 71(12): 852-858, 2023.
Article in English | MEDLINE | ID: mdl-38044138

ABSTRACT

Porcine acellular dermal matrix (pADM) is known to accelerate wound healing. However, the underlying molecular mechanism remains unclear. This study aimed to investigate the effects of pADM on wound healing and its underlying mechanisms. HaCaT cells were treated with hydrogen peroxide (H2O2) or pADM, and the appropriate treatment concentration was determined using the cell counting kit-8 and flow cytometry. Cell migration was assessed using a Transwell assay and scratch test. Inflammation was evaluated using enzyme-linked immunosorbent assay. Western blotting was performed to measure the levels of protein kinase B (AKT) pathway-related proteins. The results showed that H2O2 inhibited cell viability and induced apoptosis in a dose-dependent manner. pADM promoted cell migration and decreased the levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF-α) in H2O2-treated HaCaT cells. Moreover, pADM rescued the downregulation of phosphorylated (p)-AKT and p-mechanistic target of rapamycin (mTOR) induced by H2O2. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, abrogated migration and anti-inflammatory response caused by pADM. In conclusion, pADM promotes cell migration and inhibits inflammation by activating the AKT pathway under oxidative stress. These findings support the use of pADM for post-traumatic therapy and reveal a novel underlying mechanism of action.


Subject(s)
Acellular Dermis , Animals , Swine , Acellular Dermis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Keratinocytes/metabolism , Signal Transduction , Inflammation/drug therapy , Inflammation/metabolism
15.
J Hazard Mater ; 457: 131755, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37276693

ABSTRACT

NO2 has been known to impair immunity and exacerbate susceptibility to infectious diseases. However, scant notice has been taken of the effect of NO2 on neutrophils. Neutrophil extracellular traps (NETs) formation is necessary for NETosis development by neutrophils as an immune system against pathogens. By analyzing the morphology and signature components of NETs, we focused for the first time on finding that 10 ppm of NO2 exposure for 15 consecutive days can hinder the formation of NETs. Next, we used NO2 in vivo derivatives to probe the mechanism for NETs formation in vitro. Our findings showed that NO2 suppression of respiratory burst levels and mitogen-activated protein kinase (MAPK)/Phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling was related to NO2 reduction in NETs formation. Inhibition of phorbol myristate acetate (PMA)-induced NETs formation by NO2 hindered autophagy, as evidenced by increased mTOR protein expression, decreased LC3 protein expression, and reduced autophagic vesicles. By activating mTOR-mediated autophagy, rapamycin (Rapa) reduced the inhibition of PMA-induced NETs by NO2. This study will provide valuable insights into the mechanisms of immunotoxicity of NO2, new insights into the etiology of diseases linked to NETs formation, and a theoretical basis for protection against such illnesses.


Subject(s)
Extracellular Traps , Neutrophils , Animals , Rats , Nitrogen Dioxide , Phosphatidylinositol 3-Kinases/metabolism , Autophagy , Reactive Oxygen Species/metabolism
16.
Front Pharmacol ; 14: 1153810, 2023.
Article in English | MEDLINE | ID: mdl-37266148

ABSTRACT

Introduction: Chronic non-healing wound is a considerable clinical challenge and research into the discovery of novel pro-healing agents is underway as existing therapeutic approaches cannot sufficiently meet current needs. Method: We studied the effects of corylin in cell line fibroblasts and macrophages by Western blots, PCR, Flow cytometry assay, Immunofluorescence. Results: We showed that corylin, a main flavonoid extracted from Psoralea corylifolia L, reduced inflammatory responses, promoted collagen deposition, and accelerated the healing of full-thickness skin wounds in mice. Exploration of the underlying mechanisms showed that corylin activated the PI3K/AKT signaling, leading to fibroblasts' migration, proliferation, and scratch healing. Corylin also activated sirtuin 1 (SIRT1) signaling, enhanced the deacetylation and cytoplasmic translocation of NF-κB p65, and therefore reduced lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Furthermore, inhibition of PI3K/AKT and sirtuin 1 pathway with LY294002 and EX527 prevent the therapeutic potency of corylin against chronic wounds. Conclusion: In summary, our results suggested that corylin may be a candidate for the development of novel pro-healing agents.

17.
Zhongguo Zhen Jiu ; 43(6): 679-83, 2023 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-37313562

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) on liver protein kinase B (Akt)/forkhead box transcription factor 1 (FoxO1) signaling pathway in Zucker diabetic fatty (ZDF) rats, and to explore the possible mechanism of EA on improving liver insulin resistance of type 2 diabetes mellitus. METHODS: Twelve male 2-month-old ZDF rats were fed with high-fat diet for 4 weeks to establish diabetes model. After modeling, the rats were randomly divided into a model group and an EA group, with 6 rats in each group. In addition, six male Zucker lean (ZL) rats were used as the blank group. The rats in the EA group were treated with EA at bilateral "Zusanli" (ST 36), "Sanyinjiao" (SP 6), "Weiwanxiashu" (EX-B 3), and "Pishu" (BL 20). The ipsilateral "Zusanli" (ST 36) and "Weiwanxiashu" (EX-B 3) were connected to EA device, continuous wave, frequency of 15 Hz, 20 min each time, once a day, six times a week, for a total of 4 weeks. The fasting blood glucose (FBG) in each group was compared before modeling, before intervention and after intervention; the serum levels of insulin (INS) and C-peptide were measured by radioimmunoassay method, and the insulin resistance index (HOMA-IR) was calculated; HE staining method was used to observe the liver tissue morphology; Western blot method was used to detect the protein expression of Akt, FoxO1 and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. RESULTS: Before intervention, compared with the blank group, FBG was increased in the model group and the EA group (P<0.01); after intervention, compared with the model group, FBG in the EA group was decreased (P<0.01). Compared with the blank group, the serum levels of INS and C-peptide, HOMA-IR, and the protein expression of hepatic FoxO1 and PEPCK were increased (P<0.01), while the protein expression of hepatic Akt was decreased (P<0.01) in the model group. Compared with the model group, the serum levels of INS and C-peptide, HOMA-IR, and the protein expression of hepatic FoxO1 and PEPCK were decreased (P<0.01), while the protein expression of hepatic Akt was increased (P<0.01) in the EA group. In the model group, the hepatocytes were structurally disordered and randomly arranged, with a large number of lipid vacuoles in the cytoplasm. In the EA group, the morphology of hepatocytes tended to be normal and lipid vacuoles were decreased. CONCLUSION: EA could reduce FBG and HOMA-IR in ZDF rats, improve liver insulin resistance, which may be related to regulating Akt/FoxO1 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Electroacupuncture , Insulin Resistance , Male , Animals , Rats , Rats, Zucker , Proto-Oncogene Proteins c-akt/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/therapy , C-Peptide , Liver , Signal Transduction , Insulin , Lipids
18.
Biol Pharm Bull ; 46(5): 661-671, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36948634

ABSTRACT

Myelosuppression, a side effect of anticancer drugs, makes people more susceptible to infectious diseases by compromising the immune system. When a cancer patient develops a contagious disease, treatment with an anticancer drug is suspended or postponed to treat the infectious disease. If there was a drug that suppresses the growth of cancer cells among antibacterial agents, it would be possible to treat both infectious diseases and cancer. Therefore, this study investigated the effect of antibacterial agents on cancer cell development. Vancomycin (VAN) had little effect on cell proliferation against the breast cancer cell, MCF-7, prostate cancer cell, PC-3, and gallbladder cancer cell, NOZ C-1. Alternatively, Teicoplanin (TEIC) and Daptomycin (DAP) promoted the growth of some cancer cells. In contrast, Linezolid (LZD) suppressed the proliferation of MCF-7, PC-3, and NOZ C-1 cells. Therefore, we found a drug that affects the growth of cancer cells among antibacterial agents. Next, when we examined the effects of the combined use of existing anticancer and antibacterial agents, we found VAN did not affect the growth suppression by anticancer agents. However, TEIC and DAP attenuated the growth suppression of anticancer agents. In contrast, LZD additively enhanced the growth suppression by Docetaxel in PC-3 cells. Furthermore, we showed that LZD inhibits cancer cell growth by mechanisms that involve phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. Therefore, LZD might simultaneously treat cancer and infectious diseases.


Subject(s)
Daptomycin , Prostatic Neoplasms , Male , Humans , Anti-Bacterial Agents/therapeutic use , Phosphatidylinositol 3-Kinases , Linezolid/pharmacology , Vancomycin/pharmacology , Proto-Oncogene Proteins c-akt , Prostatic Neoplasms/drug therapy , Cell Proliferation
19.
Biosci Microbiota Food Health ; 42(1): 13-23, 2023.
Article in English | MEDLINE | ID: mdl-36660592

ABSTRACT

Screening efficient strains by cell platform is cost-effective, but to date, no screening experiments have been performed for targeted lactic acid bacteria with hypoxic/reoxygenation (H/R)-treated cardiomyocytes, and their effects on the phosphoinositide 3-kinase (PI3K)/protein kinase b (Akt)/endothelial nitric oxide synthase (eNOS) pathway in myocardial infarction (MI) are unclear. Here we activated 102 strains of lactic acid bacteria and inoculated them into MRS medium for fermentation. The fermentation supernatants of the lactic acid bacteria were incubated with an H/R model of H9C2 cells. We found that Bifidobacterium longum ZL0210 had the greatest potential for inhibiting the apoptosis of H/R-induced H9C2 cells. Furthermore, it significantly increased the expression of heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in H9C2 cardiomyocytes, as well as the Bcl-2/Bax protein ratio, protecting damaged myocardial cells via an anti-apoptotic pathway. Intragastric administration of B. longum ZL0210 to mice for one week before and after establishment of an MI model drastically attenuated the myocardial cell hypertrophy and fibrosis of the MI mice. Meanwhile, B. longum ZL0210 significantly reduced the secretion of myocardial enzymes, increased the activity of antioxidant enzymes, and inhibited lipid-oxidative malondialdehyde (MDA) levels. Moreover, it upregulated the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and the phosphorylation levels of PI3K, Akt, and eNOS, resulting in increased NO contents. In summary, we screened 102 strains of lactic acid bacteria with a cell platform and determined that B. longum ZL0210 was a favorable candidate for protecting the myocardium. We are the first to reveal the protective effects of B. longum ZL0210 for MI via activation of the PI3K/Akt/eNOS pathway through TRAIL.

20.
Biol Pharm Bull ; 46(2): 219-229, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36517007

ABSTRACT

For nearly 2000 years, Eucommia ulmoides Oliver (EUO) has been utilized in traditional Chinese medicine (TCM) throughout China. Flavonoids present in bark and leaves of EUO are responsible for their antioxidant, anti-inflammatory, antitumor, anti-osteoporosis, hypoglycemic, hypolipidemic, antibacterial, and antiviral properties, but the main bioactive compound has not been established yet. In this study, we isolated and identified quercetin glycoside (QAG) from EUO leaves (EUOL) and preliminarily explored its molecular mechanism in improving insulin resistance (IR). The results showed that QAG increased uptake of glucose as well as glycogen production in the palmitic acid (PA)-induced HepG2 cells in a dose-dependent way. Further, we observed that QAG increases glucose transporters 2 and 4 (GLUT2 and GLUT4) expression and suppresses the phosphorylation of insulin receptor substrate (IRS)-1 at serine612, thus promoting the expression of phosphatidylinositol-3-kinase (PI3K) at tyrosine458 and tyrosine199, as well as protein kinase B (Akt) and glycogen synthase kinase (GSK)-3ß at serine473 and serine9, respectively. The influence posed by QAG on the improvement of uptake of glucose was significantly inhibited by LY294002, a PI3K inhibitor. In addition, the molecular docking result showed that QAG could bind to insulin receptors. In summary, our data established that QAG improved IR as demonstrated by the increased uptake of glucose and glycogen production through a signaling pathway called IRS-1/PI3K/Akt/GSK-3ß.


Subject(s)
Eucommiaceae , Insulin Resistance , Humans , Eucommiaceae/metabolism , Glucose/metabolism , Glycogen , Glycogen Synthase Kinase 3 beta , Hep G2 Cells , Insulin/pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Serine
SELECTION OF CITATIONS
SEARCH DETAIL
...