Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Sci ; 136(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37937477

ABSTRACT

A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.


Subject(s)
Single-Domain Antibodies , Single-Domain Antibodies/metabolism
2.
Anim Biosci ; 35(10): 1592-1605, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35468273

ABSTRACT

OBJECTIVE: The objective of this study was to select an effective in vitro digestion-fermentation model to estimate the effect of decreasing dietary crude protein (CP) on odor emission during pig production and to suggest potential prediction markers through in vitro and in vivo experiments. METHODS: In the in vitro experiment, three diet formulations with different CP contents (170 g/kg, 150 g/kg, and 130 g/kg) but containing the same standardized ileal digestible essential amino acids (SID-EAA) were assessed. Each diet was evaluated by two different in vitro gastric-intestinal phase digestion methods (flask and dialysis), combined with fresh pig feces-ferment inoculation. Eighteen growing barrows (31.9±1.6 kg) were divided into three groups: control diet (180 g CP/kg, without SID-EAA adjustment), 170 g CP/kg diet, and 150 g CP/kg diet for 4 weeks. RESULTS: The in vitro digestion results indicated that in vitro digestibility was affected by the gastric-intestinal phase digestion method and dietary CP level. According to the gas kinetic and digestibility results, the dialysis method showed greater distinguishability for dietary CP level adjustment. Nitrogen-related odor compounds (NH3-N, indole, p-cresol, and skatole) were highly correlated with urease and protease activity. The feeding study indicated that both EAA-adjusted diets resulted in a lower odor emission especially in p-cresol and skatole. Both protease and urease activity in feces were also closely related to odor emissions from nitrogen metabolism compounds. CONCLUSION: Dialysis digestion in the gastric-intestinal phase followed by fresh fecal inoculation fermentation is suitable for in vitro diet evaluation. The enzyme activity in the fermentation and the fecal samples might provide a simple and effective estimation tool for nitrogen-related odor emission prediction in both in vitro and in vivo experiments.

3.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35076390

ABSTRACT

Expansion of the available repertoire of reagents for visualization and manipulation of proteins will help understand their function. Short epitope tags linked to proteins of interest and recognized by existing binders such as nanobodies facilitate protein studies by obviating the need to isolate new antibodies directed against them. Nanobodies have several advantages over conventional antibodies, as they can be expressed and used as tools for visualization and manipulation of proteins in vivo. Here, we characterize two short (<15aa) NanoTag epitopes, 127D01 and VHH05, and their corresponding high-affinity nanobodies. We demonstrate their use in Drosophila for in vivo protein detection and re-localization, direct and indirect immunofluorescence, immunoblotting, and immunoprecipitation. We further show that CRISPR-mediated gene targeting provides a straightforward approach to tagging endogenous proteins with the NanoTags. Single copies of the NanoTags, regardless of their location, suffice for detection. This versatile and validated toolbox of tags and nanobodies will serve as a resource for a wide array of applications, including functional studies in Drosophila and beyond.


Subject(s)
Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Epitopes/immunology , Single-Domain Antibodies/metabolism , Animals
4.
Development ; 148(6)2021 03 16.
Article in English | MEDLINE | ID: mdl-33593816

ABSTRACT

Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.


Subject(s)
Drosophila melanogaster/genetics , Epitopes/genetics , Peptides/genetics , Proteins/genetics , Animals , Cell Line , Cells, Cultured , Peptides/chemistry , Protein Binding/genetics , Proteins/chemistry , Synthetic Biology
5.
Adv Mater ; 29(42)2017 Nov.
Article in English | MEDLINE | ID: mdl-28960485

ABSTRACT

Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine.


Subject(s)
Ferritins/chemistry , Cytosol , Humans , Magnetics , Nanoparticles , Organelles
6.
J Comput Aided Mol Des ; 31(9): 789-800, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28752344

ABSTRACT

Since the first distribution of Molden in 1995 and the publication of the first article about this software in 2000 work on Molden has continued relentlessly. A few of the many improved or fully novel features such as improved and broadened support for quantum chemistry calculations, preparation of ligands for use in drug design related softwares, and working with proteins for the purpose of ligand docking.


Subject(s)
Drug Design , Ligands , Proteins/chemistry , Software , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship
7.
Int Rev Cell Mol Biol ; 325: 181-213, 2016.
Article in English | MEDLINE | ID: mdl-27241221

ABSTRACT

Protein-protein interactions are crucial for almost all biological processes. Studying such interactions in their native environment is critical but not easy to perform. Recently developed genetically encoded protein binders were shown to function inside living cells. These molecules offer a new, direct way to assess protein function, distribution and dynamics in vivo. A widely used protein binder scaffold are the so-called nanobodies, which are derived from the variable domain of camelid heavy-chain antibodies. Another commonly used scaffold, the DARPins, is based on Ankyrin repeats. In this review, we highlight how these binders can be functionalized in order to study proteins in vivo during the development of multicellular organisms. It is to be anticipated that many more applications for such synthetic protein binders will be developed in the near future.


Subject(s)
Proteins/metabolism , Animals , Models, Molecular , Protein Binding , Proteins/chemistry , Tissue Scaffolds
8.
Nano Lett ; 15(5): 3487-94, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25895433

ABSTRACT

Tools for controlling the spatial organization of proteins are a major prerequisite for deciphering mechanisms governing the dynamic architecture of living cells. Here, we have developed a generic approach for inducing and maintaining protein gradients inside living cells by means of biofunctionalized magnetic nanoparticles (MNPs). For this purpose, we tailored the size and surface properties of MNPs in order to ensure unhindered mobility in the cytosol. These MNPs with a core diameter below 50 nm could be rapidly relocalized in living cells by exploiting biased diffusion at weak magnetic forces in the femto-Newton range. In combination with MNP surface functionalization for specific in situ capturing of target proteins as well as efficient delivery into the cytosplasm, we here present a comprehensive technology for controlling intracellular protein gradients with a temporal resolution of a few tens of seconds.


Subject(s)
Cytosol/drug effects , Magnetite Nanoparticles/chemistry , Proteins/chemistry , Cell Line , Cytosol/chemistry , Humans , Magnetite Nanoparticles/administration & dosage , Particle Size , Proteins/administration & dosage , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL