Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 279(Pt 4): 135513, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39260655

ABSTRACT

Physical barriers composed of cell walls and protein matrix in cereals, as well as their cooking changes, play important roles in starch digestion. In this study, the physical barriers of native and cooked highland barley (HB), brown rice (BR), and oats (OA) kernels and their contribution to starch digestion were investigated. The resistant starch content was similar in cereal flours, but varied among cooked kernels (HB > BR > OA: 45.05 %, 10.30 %, and 24.71 %). The water adsorption, gelatinization enthalpy, and decrease in hardness of HB kernels were lower than those of OA and BR kernels. Microstructural observations of native kernels showed that HB had the thickest cell walls. After cooking, the lowest cell wall deformation and a dense continuous network developed from the protein matrix were observed in HB kernels. During digestion, undigested starch granules encapsulated by the stable cell walls and strong protein network were observed in HB kernels, but not in BR or OA kernels. Furthermore, the heavily milled HB kernels still had more resistant starch than the intact OA and BR kernels. Therefore, the physical barriers of HB kernels exhibited stronger inhibition of starch gelatinization and digestion. Differences in cereal physical barriers led to various inhibitory effects.


Subject(s)
Cell Wall , Edible Grain , Starch , Cell Wall/chemistry , Cell Wall/metabolism , Starch/chemistry , Starch/metabolism , Edible Grain/chemistry , Digestion , Hordeum/chemistry , Cooking , Oryza/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Avena/chemistry , Water/chemistry , Flour/analysis
2.
Am J Clin Nutr ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222687

ABSTRACT

BACKGROUND: Soy-based meat alternatives (SBMA) are becoming increasingly popular, but it is unclear if they have the same anabolic effect on skeletal muscle as animal meat. OBJECTIVES: We aimed to compare the stimulation of skeletal muscle protein synthesis by consumption of 1 or two 4 oz patties of SBMA with 4 oz (80% protein/20% fat) beef. METHODS: The study design was a randomized controlled trial. Participants were aged 18-40 y of age and in good general health with a body mass index (kg/m2) between 20 and 32. Stable isotope tracer methods were used (L-[ring-2H5] phenylalanine, [U-13C9-15N]- tyrosine, and L-[ring-2H4] tyrosine) to quantify the response of muscle protein fractional synthetic rate (FSR) to consumption of a single beef (4 oz), single SBMA (4 oz), or two 4 oz SBMA patties (8 oz). Whole-body rates of protein synthesis, breakdown, and net balance, as well as plasma essential amino acid concentrations, were also measured. RESULTS: The increase above basal in muscle protein FSR following consumption of the 4 oz beef patty (0.020 ± 0.016%/h) was significantly greater than the increase following consumption of 4 oz SBMA (P = 0.021; 0.003 ± 0.010%/h) but not 8 oz SBMA (P = 0.454; 0.013 ± 0.016%/h). The maximal essential amino acid concentration was significantly correlated (P = 0.046; r = 0.411) with the change in muscle FSR from the basal to the postprandial period. In addition, the change in muscle FSR from the basal to postprandial period was significantly correlated (P = 0.046; r = 0.412) with the corresponding change in whole-body protein synthesis. CONCLUSIONS: Consumption of a 4 oz beef patty stimulates muscle and whole-body protein synthesis >4 oz SBMA patty and similarly to 8 oz of SBMA. This trial was registered at clinicaltrials.gov as NCT05197140.

3.
Bioresour Bioprocess ; 11(1): 68, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012554

ABSTRACT

To understand the ecology of species and promote biotechnology through beneficial strain selection for improving starch yield in maize wet-milling steeping, bacterial diversity and community structure during the counter-current steeping process in a commercial steeping system were characterized and investigated. The microbial diversity in the steeping liquor, which consisted of 16 phyla, 131 families, and 290 genera, was more abundant compared to those present on the surface of unsteeped maize. As the counter-current steeping progressed, exposing newer maize to the older steepwater, Lactobacillus dominated, replacing Rahnella, Pseudomonas, Pantoea, and Serratia. The thermophilic and acidophilic microbial consortia were enriched through adaptive evolution engineering and employed to improve starch yield. Several steeping strategies were evaluated, including water alone, SO2 alone, mono-culture of B. coagulans, microbial consortia, and a combination of consortium and SO2. Combining the microbial consortium with SO2 significantly increased the starch yield to, about 66.4 ± 0.5%, a 22% and 46% increase over SO2 alone and the consortium alone, respectively. Scanning electron microscope (SEM) of steeped maize structure indicated that the combination of consortium and SO2 disrupted the protein matrix and widened gaps between starch granules in maize endosperm. This released proteins into the steepwater and left starch granules in the aleurone layer. The steeping strategy of using thermophilic and acidophilic microbial consortium as additives shows potential application as an environmentally friendly alternative to conventional maize steeping procedures.

4.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950560

ABSTRACT

In cereals, the protein body and protein matrix are usually two morphological protein structures. However, processing treatments can affect protein structures, change protein bodies into the matrix, or induce a change in the matrix structure; therefore, the processing-induced matrix was listed as the third morphological structure of the protein. Previous research on the effect of proteins was mainly based on protein content and composition, but these studies arrived at different conclusions. Studying the effect of protein morphological structures on sensorial property and starch digestion can provide a theoretical basis for selecting cultivars with high sensorial property and help produce low-glycemic index foods for people with diabetes, controlling their postprandial blood sugar. This study aimed to review the distribution and structure of protein bodies, protein matrices, and processing-induced matrices, as well as their influence on cereal sensorial property and starch digestion. Therefore, we determined the protein morphological structures in different cereal cultivars and summarized its impact. Protein bodies mainly have steric stabilization effects on starch gelatinization, whereas the protein matrix serves as a physical barrier surrounding the starch to inhibit water absorption and α-amylase. Processing can change protein morphological structures, enabling protein bodies to act as a physical matrix barrier.

5.
Food Res Int ; 169: 112814, 2023 07.
Article in English | MEDLINE | ID: mdl-37254390

ABSTRACT

OBJECTIVE: The aim of this study was to analyze the protein digestibility and postprandial metabolism in rats of milk protein matrices obtained by different industrial processes. MATERIAL AND METHODS: The study was conducted on Wistar rats that consumed a meal containing different 15N-labeled milk proteins. Four milk matrices were tested: native micellar caseins (C1), caseins low in calcium (C2 low Ca2+), a matrix containing a ratio 63:37 of caseins and whey proteins (CW2) and whey proteins alone (W). Blood and urine were collected during the postprandial period and rats were euthanized 6 h after meal intake to collect digestive contents and organs. RESULTS: Orocaecal digestibility values of amino acids ranged between 96.0 ± 0.2% and 96.6 ± 0.4% for C1-, C2 low Ca2+- and W-matrices, while this value was significantly lower for CW2 matrix (92.4 ± 0.5%). More dietary nitrogen was sequestered in the splanchnic area (intestinal mucosa and liver) as well as in plasma proteins after ingestion of W matrix, especially compared to the C1- and C2 low Ca2+-matrices. Peptidomic analysis showed that more milk protein-derived peptides were identified in the caecum of rats after the ingestion of the matrices containing caseins compared to W matrix. CONCLUSION: We found that demineralization of micellar caseins did not modify its digestibility and postprandial metabolism. The low digestibility of the modified casein-to-whey ratio matrix may be ascribed to a lower accessibility of the protein to digestive enzymes due to changes in the protein structure, while the higher nitrogen splanchnic retention after ingestion of whey was probably due to the fast assimilation of its protein content. Finally, our results showed that industrial processes that modify the structure and/or composition of milk proteins influence protein digestion and utilization.


Subject(s)
Amino Acids , Milk Proteins , Rats , Animals , Milk Proteins/chemistry , Amino Acids/metabolism , Caseins/chemistry , Whey Proteins , Postprandial Period , Rats, Wistar , Nitrogen/metabolism , Peptides
6.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079744

ABSTRACT

Dietary calcium intake is a modifiable, lifestyle factor that can affect bone health and the risk of fracture. The diurnal rhythm of bone remodelling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of daily, bed-time ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or control (CON), for 24 weeks, on serum biomarkers of bone resorption (C-terminal telopeptide of type I collagen, CTX) and formation (serum pro-collagen type 1 N-terminal propeptide, P1NP), and site-specific aerial bone mineral density (BMD), trabecular bone score (TBS), in postmenopausal women with osteopenia. The MBPM supplement increased mean daily energy, protein, and calcium intake, by 11, 30, and 107%, respectively. 24-week supplementation with MBPM decreased CTX by 23%, from 0.547 (0.107) to 0.416 (0.087) ng/mL (p < 0.001) and P1NP by 17%, from 60.6 (9.1) to 49.7 (7.2) µg/L (p < 0.001). Compared to CON, MBPM induced a significantly greater reduction in serum CTX (mean (CI95%); −9 (8.6) vs. −23 (8.5)%, p = 0.025 but not P1NP −19 (8.8) vs. −17 (5.2)%, p = 0.802). No significant change in TBS, AP spine or dual femur aerial BMD was observed for CON or MBPM. This study demonstrates the potential benefit of bed-time ingestion of a calcium-fortified, milk-based protein matrix on homeostatic bone remodelling but no resultant treatment effect on site-specific BMD in postmenopausal women with osteopenia.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis, Postmenopausal , Animals , Biomarkers , Bone Density , Bone Remodeling , Calcium/pharmacology , Calcium, Dietary/pharmacology , Collagen Type I , Eating , Female , Humans , Milk , Milk Proteins/pharmacology , Postmenopause
7.
Foods ; 11(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35327216

ABSTRACT

Plant-based proteins are very often used as carriers of different phenolic compounds. For that purpose, complexation of quercetin with almond and brown rice protein matrices was investigated. The amount of protein matrices was constant, while the concentration of quercetin varied (1 mM, 2 mM or 5 mM) during complexation. Dried complexes were investigated for quercetin amount (HPLC analysis) and antioxidant activity (DPPH, FRAP and CUPRAC methods). Additionally, complexation was proven by DSC and FTIR-ATR screening. An increase in the concentration of quercetin in the initial complexation mixture resulted in the increase in the adsorption of quercetin onto protein matrices. For the brown rice protein matrices, this increase was proportional to the initial quercetin concentration. Adsorption of quercetin caused the change in thermal stability of microparticles in comparison to corresponding protein matrices that have been proven by DSC. FTIR-ATR analysis revealed structural changes on microparticles upon adsorption of quercetin.

8.
Meat Sci ; 187: 108750, 2022 May.
Article in English | MEDLINE | ID: mdl-35217393

ABSTRACT

The present investigation deals with the textural properties, colloidal interactions, and morphology of emulsified meat systems in the presence of flaxseed flour (FF) and tomato powder (TP). The results displayed that the emulsifying capacity and texture of raw and cooked meat batters were significantly affected following the addition of TP and FF. The cooked emulsified sausages containing 3% of FF and 3% (w/w) of TP showed the highest values for hardness and cohesiveness, as compared to the control and 6% (w/w) of FF samples. The outcomes of mechanical shearing forces and SEM showed the formation of a gel-type matrix around the unabsorbed protein in TP-FF batters. These patterns were then confirmed by the higher values of GN° (van Gurp Palmen) associated with an increase in the elasticity and the molecular entanglement. In contrast, large fat globules, low entanglement, and protein cross-linking were observed in meat batters with 6% FF.


Subject(s)
Flax , Meat Products , Solanum lycopersicum , Color , Flour , Meat , Meat Products/analysis , Powders
9.
Nutrients ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36615763

ABSTRACT

The microstructure of legumes plays a crucial role in regulating starch digestion and postprandial glycemic responses. Starch granules are double encapsulated within the outer cell wall and the inner protein matrix of legume cotyledon cells. Despite progress in understanding the role of cell walls in delaying starch digestion, the role of the protein matrix has received little research attention. The aim of this study was to evaluate if the protein matrix and cell wall may present combined physical barriers retarding enzyme hydrolysis of intracellular starch. Intact cotyledon cells were isolated from navy beans and used to assess the barrier effect of the protein matrix on the digestion of starch under conditions simulating the upper gastrointestinal tract. The cells were pretreated with pepsin at 37 °C and pH 2.0 for 1, 4, or 24 h and without pepsin for 24 h (control) to facilitate removal of the intracellular protein matrix prior to cooking and simulated in vitro digestion. A longer pretreatment time resulted in a lower protein content of the cells and a higher initial rate and extent of starch hydrolysis. We suggest that in addition to the primary cell wall barrier, the protein matrix provides a secondary barrier restricting the accessibility of α-amylase to starch. This study provides a new fundamental understanding of the relationship between the structural organization of legume cotyledon cells and starch digestion that could inform the design of novel low glycemic index foods.


Subject(s)
Fabaceae , Pepsin A , Pepsin A/metabolism , Starch/metabolism , Cotyledon/metabolism , Fabaceae/chemistry , Cooking , Digestion
10.
Food Chem ; 372: 131291, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34638062

ABSTRACT

White wheat salted noodles containing oats have a slower digestion rate those without oats, with potential health benefits. Oat ß-glucan may play an important role in this. Effects of sheeting and shearing during noodle-making and subsequent cooking on ß-glucan concentration, solubility, molecular size and starch digestibility were investigated. The levels of ß-glucan were reduced by 16% after cooking, due to the loss of ß-glucan into the cooking water. Both the noodle-making process and cooking increased the solubility of ß-glucan but did not change its average molecular size. Digestion profiles show that ß-glucan in wholemeal oat flour did not change starch digestion rates compared with isolated starch, but reduced the starch digestion rate of oat-fortified wheat noodles compared to the control (wheat noodles). Confocal laser scanning microscopy suggests that interaction between ß-glucan and protein contributes to the starch-protein matrix and changes noodle microstructure, and thus alters their digestibility.


Subject(s)
Starch , beta-Glucans , Avena , Cooking , Flour/analysis , Solubility
11.
J Sci Food Agric ; 102(5): 2144-2152, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34614199

ABSTRACT

BACKGROUND: Astaxanthin ester derived from Haematococcus pluvialis is often used as a functional and nutritional ingredient in foods. However, its utilization is currently limited as a result of its chemical instability and low bioavailability. Food matrix microcapsules are becoming increasingly popular because of their safety and high encapsulation efficiency. In the present study, the effect of protein matrixes on the properties of microcapsules was evaluated. RESULTS: We investigated the effects of storage on astaxanthin ester microcapsules and the corresponding rehydration solution at 40 °C under a nitrogen atmosphere, as well as in darkness. The results showed that the stability of products prepared based on whey protein (WP) and corn-gluten was superior to that of products prepared based on lactoferrin, soy protein and sodium caseinate. The bioavailability of astaxanthin ester microcapsules encapsulated with different proteins and examined by means of astaxanthin concentrations in the serum and liver after oral administration was compared. All five protein wall materials could significantly improve the bioavailability of astaxanthin ester. The microcapsules prepared based on WP had the highest bioavailability, with a value of 10.69 ± 0.75 µg·h mL-1 , which was 3.15 times higher compared to that of the control group. CONCLUSION: The results of the present study showed that protein encapsulation, especially WP encapsulation, could effectively improve the stability, water solubility and bioavailability of astaxanthin esters. Thus, WP can be used as the main wall material in delivery systems. © 2021 Society of Chemical Industry.


Subject(s)
Esters , Xanthophylls , Biological Availability , Capsules , Esters/chemistry , Xanthophylls/chemistry
12.
Biochem Biophys Res Commun ; 583: 22-28, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34715497

ABSTRACT

Chlorogenic acid is one of the most abundant polyphenols found in human diet. It is well-documented that chlorogenic acid has a significant impact on human cells, especially in the regulation of inflammation and metabolic processes. However, its role in regulating skin functions, especially with respect to the dermal collagen network or epidermal skin barrier, has not yet been elucidated. Here, we report that chlorogenic acid treatment can induce production of procollagen type I in human dermal fibroblast, Hs68 cell lines. Moreover, this treatment can stimulate upregulation of skin barrier genes, including the ones encoding filaggrin (FLG), involucrin (IVL), and envoplakin (EVPL), in epidermal keratinocytes. Chlorogenic acid also triggered a multifaceted response in the cytokine profile of keratinocytes. Therefore, we suggest that chlorogenic acid can be used to restore the impaired dermal matrix network as well as the epidermal skin barrier.

13.
Emerg Top Life Sci ; 5(1): 89-101, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33416893

ABSTRACT

Protein hydration dynamics plays an important role in many physiological processes since protein fluctuations, slow solvation, and the dynamics of hydrating water are all intrinsically related. Red edge excitation shift (REES) is a unique and powerful wavelength-selective (i.e. excitation-energy dependent) fluorescence approach that can be used to directly monitor the environment-induced restriction and dynamics around a polar fluorophore in a complex biological system. This review is mainly focused on recent applications of REES and a novel analysis of REES data to monitor the structural dynamics, functionally relevant conformational transitions and to unmask the structural ensembles in proteins. In addition, the novel utility of REES in imaging protein aggregates in a cellular context is discussed. We believe that the enormous potential of REES approach showcased in this review will engage more researchers, particularly from life sciences.


Subject(s)
Fluorescent Dyes , Proteins , Protein Conformation , Solvents , Spectrometry, Fluorescence
14.
Food Chem ; 339: 127875, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32866701

ABSTRACT

Gluten protein based snacks have been a major concern for allergen, low nutrition and physio-chemical properties. In this study, wheat flour (WF) was replaced with cassava starch (CS) at different levels [10, 20, 30, 40 and 50%(w/w)] to prepare fried snacks. The addition of CS significantly (P < 0.05) increased hardness and pasting properties while gluten network, oil uptake, water holding capacity, and expansion were decreased. Fourier transform infrared spectroscopy revealed that the secondary structure of amide I, α-helix (1650-1660 cm-1), along with amide II region (1540 cm-1) changed when CS was added. Starch-protein complex was identified by X-ray diffraction analysis while no starch-protein-lipid complex was observed. The micrographs from scanning electron microscopy showed that starch-protein matrix was interrupted when ≥40%(w/w) CS was added. Furthermore, in vitro calcium bioavailability was decreased slightly with the addition of CS. The results suggest the feasibility of adding 40% CS as an alternative to WF in snacks.


Subject(s)
Digestion , Glutens/chemistry , Manihot/chemistry , Snacks , Triticum/chemistry , Flour/analysis , Hardness , Starch/chemistry , Water/chemistry
15.
Food Res Int ; 137: 109512, 2020 11.
Article in English | MEDLINE | ID: mdl-33233147

ABSTRACT

When pulse seeds from a single batch are cooked, considerable variability of hardness values in the population is usually observed. Sorting the seeds into hardness categories could reduce the observed diversity and increase uniformity. Therefore, we investigated the effect of processing intensity whether or not combined with sorting into hardness categories on the in vitro starch and protein digestion kinetics of cooked Bambara groundnuts (cooking times 40 min and 120 min). The average hardness values were 89 ± 32 N and 42 ± 20 N for 40 min and 120 min cooking time, respectively. The high standard deviation of hardness for each cooking time revealed a high level of diversity amongst the seeds. Individual cells were isolated from (non-)sorted seeds before simulating digestion. The estimated lag phase describing the initial phase of starch digestion was not significantly different despite the processing intensity or the hardness category, implying that cell wall barrier properties for these samples were not majorly different. However, the rate constants and the extents of starch digestion of samples cooked for 40 min were significantly higher for the low hardness (50-65 N) compared to the high hardness (80-95 N) category (0.71 vs 1.02 starch%/min and 63 vs 77%, respectively). Kinetic evaluation of digested soluble protein (after acid hydrolysis of the digestive supernatant) showed that low hardness samples were digested faster than high hardness samples (0.037 vs 0.050 min-1). The faster protein hydrolysis in the low hardness samples was accompanied by faster starch digestion, indicating the possible role of the protein matrix barrier. Individual cells of comparable hardness obtained from the two different processing times had similar starch and protein digestion kinetics. Our work demonstrated that, beyond cooking time, hardness is a suitable food design attribute that can be used to modulate starch and protein digestion kinetics of pulse cotyledon cells.


Subject(s)
Digestion , Starch , Cooking , Hardness , Kinetics , Proteolysis , Starch/metabolism
16.
J Texture Stud ; 51(4): 688-697, 2020 08.
Article in English | MEDLINE | ID: mdl-32472561

ABSTRACT

A texture analysis method for evaluating the processing quality of noodle dough with a high Tartary buckwheat flour (BF) content was established. And then the improvement of wheat flour (WF), wheat gluten (WG), and pre-gelatinized Tartary buckwheat flour (PBF) for the processing quality of buckwheat noodle dough was compared quantitatively, and the mechanism was explored through the observation of gluten network in dough sheets. Texture results showed that the coefficients of variation of tensile strength and adhesiveness of dough sheets among 16 groups were 17.76% and 40.72%, respectively, and the intragroup variation coefficients were only 4.17% and 7.07%, respectively. The tensile strength of dough sheets was significantly positively correlated with gluten index of WF and WG. In addition, with the increase of WG and PBF addition, the tensile strength and adhesiveness of dough sheets showed a linearly increase trend. Furthermore, the gluten network in the dough sheets containing WF or WG with high gluten index distributed more evenly and compactly than that with low gluten index. The dough sheet with 9% PBF showed more uniform gluten network, compared with that without added PBF. Overall, texture analysis of dough sheet can be used to evaluate the processing quality of noodle dough containing 70% BF, and the WF and WG with high gluten index had better improvement than PBF.


Subject(s)
Fagopyrum/chemistry , Flour/analysis , Food Handling , Cooking , Glutens , Triticum/chemistry
17.
Geoderma ; 363: 114143, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32255838

ABSTRACT

While soil microbial ecology, soil organic carbon (SOC) and soil physical quality are widely understood to be interrelated - the underlying drivers of emergent properties, from land management to biochemistry, are hotly debated. Biological binding agents, microbial exudates, or 'extracellular polymeric substances' (EPS) in soil are now receiving increased attention due to several of the existing methodological challenges having been overcome. We applied a recently developed approach to quantify soil EPS, as extracellular protein and extracellular polysaccharide, on the well-characterised soils of the Highfield Experiment, Rothamsted Research, UK. Our aim was to investigate the links between agricultural land use, SOC, transient binding agents known as EPS, and their impacts on soil physical quality (given by mean weight diameter of water stable aggregates; MWD). We compared the legacy effects from long-term previous land-uses (unfertilised grassland, fertilised arable, and fallow) which were established > 50 years prior to investigation, crossed with the same current land-uses established for a duration of only 2.5 years prior to sampling. Continuously fallow and grassland soils represented the poorest and greatest states of structural integrity, respectively. Total SOC and N were found to be affected by both previous and current land-uses, while extractable EPS and MWD were driven primarily by the current land-use. Land-use change between these two extremes (fallow â†’ grass; grass â†’ fallow) resulted in smaller SOC differences (64% increase or 37% loss) compared to MWD (125% increase or 78% loss). SOC concentration correlated well to MWD (adjusted R 2 = 0.72) but the greater SOC content from previous grassland was not found to contribute directly to the current stability (p < 0.05). Our work thus supports the view that certain distinct components of SOC, rather than the total pool, have disproportionately important effects on a soil's structural stability. EPS-protein was more closely related to aggregate stability than EPS-polysaccharide (p values of 0.002 and 0.027, respectively), and ranking soils with the 5 greatest concentrations of EPS-protein to their corresponding orders of stability (MWD) resulted in a perfect match. We confirmed that both EPS-protein and EPS-polysaccharide were transient fractions: supporting the founding models for aggregate formation. We suggest that management of transient binding agents such as EPS -as opposed to simply increasing the total SOC content- may be a more feasible strategy to improve soil structural integrity and help achieve environmental objectives.

18.
Nutrients ; 11(6)2019 Jun 23.
Article in English | MEDLINE | ID: mdl-31234587

ABSTRACT

The diurnal rhythm of bone remodeling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of bedtime ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or maltodextrin (CON) on acute (0-4 h) blood and 24-h urinary change in biomarkers of bone remodeling in postmenopausal women with osteopenia. In CON, participants received 804 ± 52 mg calcium, 8.2 ± 3.2 µg vitamin D and 1.3 ± 0.2 g/kg BM protein per day. MBPM increased calcium intake to 1679 ± 196 mg, vitamin D to 9.2 ± 3.1 µg and protein to 1.6 ± 0.2 g/kg BM. Serum C-terminal cross-linked telopeptide of type I collagen (CTX) and procollagen type 1 amino-terminal propeptide (P1NP), and urinary N-telopeptide cross-links of type I collagen (NTX), pyridinoline (PYD) and deoxypyridinoline (DPD) was measured. Analyzed by AUC and compared to CON, a -32% lower CTX (p = 0.011, d = 0.83) and 24% (p = 0.52, d = 0.2) increase in P1NP was observed for MBPM. Mean total 24 h NTX excreted in MBPM was -10% (p = 0.035) lower than CON. Urinary PYD and DPD were unaffected by treatment. This study demonstrates the acute effects of bedtime ingestion of a calcium-fortified, milk-based protein matrix on bone remodeling.


Subject(s)
Bone Diseases, Metabolic/diet therapy , Bone Remodeling , Calcium, Dietary/administration & dosage , Circadian Rhythm , Dietary Supplements , Food, Fortified , Milk Proteins/administration & dosage , Postmenopause/blood , Aged , Biomarkers/blood , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/physiopathology , Calcium, Dietary/adverse effects , Collagen Type I/blood , Dietary Supplements/adverse effects , Female , Food, Fortified/adverse effects , Humans , Ireland , Middle Aged , Milk Proteins/adverse effects , Parathyroid Hormone/blood , Peptide Fragments/blood , Peptides/blood , Procollagen/blood , Time Factors , Treatment Outcome , Vitamin D/administration & dosage
19.
Animal ; : 1-7, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30526704

ABSTRACT

Starchy grain is usually supplemented to diets containing low-quality forage to provide sufficient energy for ruminant animals. Ruminal degradation of grain starch mainly depends on the hydrolysis of the endosperm, which may be variable among grain sources. This study was conducted to investigate the influence of endosperm structure of wheat and corn on in vitro rumen fermentation and nitrogen (N) utilization of rice straw. The 3×4 factorial design included three ratios of concentrate to forage (35:65, 50:50 and 65:35) and four ratios of wheat to corn starch (20:80, 40:60, 60:40 and 80:20). The endosperm structure was detected by scanning electronic microscopy and a confocal laser scanning microscopic. An in vitro gas test was performed to evaluate the rumen fermentation characteristics and N utilization. Starch granules were embedded in the starch-protein matrix in corn, but more granules were separated from the matrix in the wheat endosperm. With the increasing ratio of wheat, rate and extent of gas production, total volatile fatty acids, and ammonia N increased linearly (P<0.01), but microbial protein concentration decreased (quadratic, P<0.01), with the maximum value at a ratio of 40% wheat. The efficiency of N utilization decreased linearly (P<0.01). Rumen fermentation and N utilization were significantly affected by the concentrate-to-forage ratio (P<0.01). Significant interactions between the concentrate-to-forage ratio and the wheat-to-corn ratio were detected in total volatile fatty acids and the efficiency of N utilization (P<0.01). In summary, the starch-protein matrix and starch granules in the wheat and corn endosperm mixture play an important role in the regulation of rumen fermentation and N utilization under low-quality forage.

20.
J Dairy Sci ; 100(11): 9048-9051, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28918152

ABSTRACT

The objective of this study was to determine the contribution of corn kernel enzymes, bacteria, fungi, and fermentation end-products (main acids and ethanol) to protein solubilization during fermentation of reconstituted corn grain silage. Flint corn kernels were ground (5-mm sieve), rehydrated to 32% of moisture, and treated with no additives (control), gamma irradiation (32 kGy), gamma irradiation + fermentation end-products (1% of lactic acid, 0.3% of acetic acid, and 0.7% of ethanol, as fed), and natamycin (1% as fed). Treated grains were ensiled in nylon-polyethylene bags and stored for 90 d. Protein solubilization was calculated for each treatment and the contributions of proteolytic sources were determined. Bacterial activity was the main contributor to proteolysis (60%) followed by corn kernel enzymes (30%), whereas fungi and fermentation end-products had only minor contributions (∼5% each).


Subject(s)
Plant Proteins/metabolism , Proteolysis , Silage , Zea mays/metabolism , Acetic Acid/metabolism , Animals , Bacteria/metabolism , Fermentation , Fungi/metabolism , Hydrogen-Ion Concentration , Zea mays/enzymology , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL