Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 109: 110428, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228942

ABSTRACT

A peculiar polygonal protein scaffolding that resembles to spectrin-based skeleton of red blood cells can be reconstructed on the outer surface of vesicle-like nanoerythrosomes. The approximately 130 nm sized nanoerythrosomes are produced from red blood cell ghosts by addition of phospholipids (dipalmitoylphosphatidylcholine, DPPC). The scaffolding, constructed from the structural proteins of the cell membrane skeleton, covers the whole object resulting an enhanced stiffness. The protein pattern of the scaffolding is thermosensitive, reversible transformable in the biologically relevant temperature range. When the lipid additive is changed from DPPC to lysophospholipid (LPC), the protein network/scaffolding ceases to exist. By the variation of lipid type and ratio, a tailoring of the nanoerythrosomes can be achieved. During the tailoring process nanoerythrosomes or micelles, in a wide size range from 200 to 30 nm, are produced.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Membranes/chemistry , Lipid Bilayers/chemistry , Lysophospholipids/chemistry , Protein Folding
2.
Onco Targets Ther ; 13: 2067-2092, 2020.
Article in English | MEDLINE | ID: mdl-32210574

ABSTRACT

Circular RNA (circRNA) is an intriguing class of RNA with covalently closed-loop structure and is highly stable and conservative. As new members of the ncRNAs, the function, mechanism, potential diagnostic biomarker, and therapeutic target have raised increased attention. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhibiting tissue/developmental-stage-specific manner. Over 30,000 circRNAs have been identified with their unique structures to maintain stability more easily than linear RNAs. An increased numbers of circRNAs are dysregulated and involved in several biological processes of malignance, such as tumorigenesis, growth, invasion, metastasis, apoptosis, and vascularization. Emerging evidence suggests that circRNAs play important roles by acting as miRNA sponge or protein scaffolding, autophagy regulators, and interacting with RNA-binding protein (RBP), which may potentially serve as a novel promising biomarker for prevention, diagnosis and therapeutic target for treatment of human cancer with great significance either in scientific research or clinic arena. This review introduces concept, major features of circRNAs, and mainly describes the major biological functions and clinical relevance of circRNAs, as well as expressions and regulatory mechanisms in various types of human cancer, including pathogenesis, mode of action, potential target, signaling regulatory pathways, drug resistance, and therapeutic biomarkers. All of which provide evidence for the potential utilities of circRNAs in the diagnosis and treatment of cancer.

3.
Trends Biotechnol ; 38(4): 432-446, 2020 04.
Article in English | MEDLINE | ID: mdl-31718802

ABSTRACT

Protein scaffolding is a natural phenomenon whereby proteins colocalize into macromolecular complexes via specific protein-protein interactions. In the case of metabolic enzymes, protein scaffolding drives metabolic flux through specific pathways by colocalizing enzyme active sites. Synthetic protein scaffolding is increasingly used as a mechanism to improve product specificity and yields in metabolic engineering projects. To date, synthetic scaffolding has focused primarily on soluble enzyme systems, but many metabolic pathways for high-value secondary metabolites depend on membrane-bound enzymes. The compositional diversity of biological membranes and general challenges associated with modifying membrane proteins complicate scaffolding with membrane-requiring enzymes. Several recent studies have introduced new approaches to protein scaffolding at membrane surfaces, with notable success in improving product yields from specific metabolic pathways.


Subject(s)
Cell Membrane/enzymology , Metabolic Engineering , Metabolic Networks and Pathways , Multienzyme Complexes/metabolism , Catalytic Domain , Membrane Proteins/metabolism , Protein Engineering , Synthetic Biology
4.
ACS Synth Biol ; 8(4): 611-620, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30884945

ABSTRACT

Protein scaffolding is a useful strategy for controlling the spatial arrangement of cellular components via protein-protein interactions. Protein scaffolding has primarily been used to colocalize soluble proteins in the cytoplasm, but many proteins require membrane association for proper function. Scaffolding at select membrane domains would provide an additional level of control over the distribution of proteins within a cell and could aid in exploiting numerous metabolic pathways that contain membrane-associated enzymes. We developed and characterized a membrane-bound protein scaffolding module based on the thylakoid protein CURT1A. This scaffolding module forms homo-oligomers in the membrane, causing proteins fused to CURT1A to cluster together at membrane surfaces. It is functional in diverse expression hosts and can scaffold proteins at thylakoid membranes in chloroplasts, endoplasmic reticulum in higher plants and Saccharomyces cerevisiae, and the inner membrane of Escherichia coli.


Subject(s)
Membrane Proteins/metabolism , Thylakoids/metabolism , Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Escherichia coli/metabolism , Plant Proteins/metabolism , Plants/metabolism , Protein Interaction Maps/physiology , Saccharomyces cerevisiae/metabolism
5.
Article in English | MEDLINE | ID: mdl-26557643

ABSTRACT

Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.

SELECTION OF CITATIONS
SEARCH DETAIL