Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 6: e4924, 2018.
Article in English | MEDLINE | ID: mdl-29900074

ABSTRACT

L-amino acid oxidases (LAAOs) are ubiquitous enzymes in nature. Bioactivities described for these enzymes include apoptosis induction, edema formation, induction or inhibition of platelet aggregation, as well as antiviral, antiparasite, and antibacterial actions. With over 80 species, Micrurus snakes are the representatives of the Elapidae family in the New World. Although LAAOs in Micrurus venoms have been predicted by venom gland transcriptomic studies and detected in proteomic studies, no enzymes of this kind have been previously purified from their venoms. Earlier proteomic studies revealed that the venom of M. mipartitus from Colombia contains ∼4% of LAAO. This enzyme, here named MipLAAO, was isolated and biochemically and functionally characterized. The enzyme is found in monomeric form, with an isotope-averaged molecular mass of 59,100.6 Da, as determined by MALDI-TOF. Its oxidase activity shows substrate preference for hydrophobic amino acids, being optimal at pH 8.0. By nucleotide sequencing of venom gland cDNA of mRNA transcripts obtained from a single snake, six isoforms of MipLAAO with minor variations among them were retrieved. The deduced sequences present a mature chain of 483 amino acids, with a predicted pI of 8.9, and theoretical masses between 55,010.9 and 55,121.0 Da. The difference with experimentally observed mass is likely due to glycosylation, in agreement with the finding of three putative N-glycosylation sites in its amino acid sequence. A phylogenetic analysis of MmipLAAO placed this new enzyme within the clade of homologous proteins from elapid snakes, characterized by the conserved Serine at position 223, in contrast to LAAOs from viperids. MmipLAAO showed a potent bactericidal effect on S. aureus (MIC: 2 µg/mL), but not on E. coli. The former activity could be of interest to future studies assessing its potential as antimicrobial agent.

2.
Protein Sci ; 26(11): 2195-2206, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28815769

ABSTRACT

A key concept in template-based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well-established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure-function relationship. We show that protein families with low conformational diversity show a well-correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.


Subject(s)
Models, Molecular , Proteins/chemistry , Sequence Homology, Amino Acid , Structural Homology, Protein , Amino Acid Sequence , Databases, Protein , Sequence Alignment
3.
J Biol Chem ; 288(19): 13641-54, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23511635

ABSTRACT

BACKGROUND: Kallikreins play a pivotal role in establishing prostate cancer. RESULTS: In contrast to the classical Kunitz plant inhibitor SbTI, the recombinant kallikrein inhibitor (rBbKIm) led to prostate cancer cell death, whereas fibroblast viability was not affected. CONCLUSION: rBbKIm shows selective cytotoxic effect and angiogenesis inhibition against prostate cancer cells. SIGNIFICANCE: New actions of rBbKIm may contribute to understanding the mechanisms of prostate cancer. Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Kallikreins/antagonists & inhibitors , Plant Proteins/pharmacology , Apoptosis/drug effects , Calcium Signaling , Caspase 3 , Caspase 9/metabolism , Cell Adhesion/drug effects , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Movement , Cytochromes c/metabolism , Fibroblasts/drug effects , Fibroblasts/physiology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Lipopolysaccharides/pharmacology , Male , Mitochondria/drug effects , Mitochondria/metabolism , Prostatic Neoplasms , Recombinant Proteins/pharmacology , Trypsin Inhibitor, Kunitz Soybean/pharmacology
4.
J Biol Chem ; 288(20): 14098-14113, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23530047

ABSTRACT

In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.


Subject(s)
Acremonium/metabolism , Fragaria/microbiology , Fungal Proteins/metabolism , Plant Diseases/microbiology , Subtilisin/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Base Sequence , Biological Assay , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA, Complementary/metabolism , Disease Resistance , Electrophoresis, Polyacrylamide Gel , Fragaria/immunology , Mass Spectrometry , Molecular Sequence Data , Plant Immunity , Reactive Oxygen Species , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Subtilisins/metabolism , Trypsin , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL