Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.454
Filter
1.
Parasitol Int ; : 102919, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960370

ABSTRACT

BACKGROUND/OBJECTIVE: Parasites in stray cats hold significant zoonotic importance, posing a potential threat to public health. This study, therefore, has practical implications as it aims to investigate the prevalence of cat parasites in Middle Eastern countries. METHODS: The research process was rigorous and thorough, spanning from 2000 to 2023. Data collection and analysis were conducted utilizing multiple international and national databases, including Google Scholar, Scopus, PubMed, and Irandoc. This meticulous approach ensures the reliability and validity of the findings, providing a solid foundation for further research and preventive measures. RESULT: 250 articles were collected and read out of which 170 were comprehensively reviewed. Among these, 85 articles were from Iran, 25 from Türkiye, 20 from Iraq, 11 from Egypt, five from Qatar, three from Cyprus, three from Kuwait, and one each from the UAE, Saudi Arabia, Syria, Lebanon, Jordan, Israel, and Palestine. Toxocara cati emerged as one of the most prevalent nematodes, exhibiting the highest prevalence in Iran, ranging from 8% to 90%, followed by Egypt, with a range of 8.23% to 58.7%. In comparison, the lowest prevalence was recorded in Qatar at 8%. Hydatigera taeniaeformis, a significant cestode, showed the highest prevalence in Qatar, with a range of 73.6% to 75.8%, while the lowest in Kuwait at 0.8%. In Iran, the prevalence ranged from 0.95% to 64.7%. Toxoplasma gondii, a vital protozoan, showcased the highest prevalence in Lebanon at 78.1% and the lowest in the UAE at 0.8%. In Iran, the prevalence ranged between 1.2% and 90%. Additionally, noteworthy patterns regarding the distribution and potential risk factors associated with these parasites were observed. While gender variations were insignificant, environmental conditions such as high humidity and absence of sunlight exposure, along with the age and behavior of cats, emerged as among the most crucial risk factors associated with the prevalence of these parasites. CONCLUSION: The prevalence of parasites among stray cats in Iran and other Middle Eastern countries remains notably high. This emphasizes the urgent need for a series of control and preventive measures. Implementing effective anti-parasitic strategies and emphasizing the development of multiple diagnostic methods are essential.

2.
Turkiye Parazitol Derg ; 48(2): 82-88, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958402

ABSTRACT

Objective: Giardia and Cryptosporidium are enteric protozoa that can cause a variety of gastrointestinal diseases, especially in vulnerable people like children, the elderly, and those with impaired immune systems. In order to ascertain the microbiological quality of the recreational water from Araromi Beach in Ilaje Local Government Area, Ondo State, Nigeria. This risk assessment is of great significance to human health protection against waterborne diseases. The aim of this study was to determine the microbial quality of recreational water from Araromi Beach in Ilaje Local Government Area, Ondo State, Nigeria. Methods: Microscopic examination of Cryptosporidium and Giardia oocysts were done. Results: Results revealed maximum occurrence of Cryptosporidium parvum (20 oocysts/100 mL) of water sample in the month of April and maximum occurrence of Giardia lamblia (300 cysts/100 mL) of water sample in the month of June. Additionally, according to Kolmogorov-Smirnov tests for normalcy Ho =0.05, Giardia lamblia and Cryptosporidium parvum were not regularly distributed in the water samples collected from the beach throughout the study period. The average likelihood of contracting Giardia lamblia and Cryptosporidium parvum infections after consuming 100 mL of beach water was 0.96 and 0.35, respectively. The risks of infection associated with Cryptosporidium parvum was lower than those associated with Giardia lamblia in water from the beach, but were both above the acceptable risk limit of 10-4. Conclusion: The results of this study indicate that Giardia and Cryptosporidium may represent serious health hazards to people who engage in aquatic activities. Adopting a comprehensive strategy that includes regular inspections, enhanced detection techniques, and the prevention of aquatic environment pollution may provide clean and safe recreational water for all, thereby safeguarding the public's health.


Subject(s)
Cryptosporidium parvum , Giardia lamblia , Cryptosporidium parvum/isolation & purification , Giardia lamblia/isolation & purification , Nigeria/epidemiology , Humans , Seawater/parasitology , Risk Assessment , Water Microbiology , Giardiasis/epidemiology , Giardiasis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Recreation , Oocysts
3.
J Eukaryot Microbiol ; : e13037, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946328

ABSTRACT

This paper highlights and honors the connectivity among protistan researchers, using my own research journey as a backdrop, with attention to the supply chain of ideas, supporters, and other influencers who helped to shape and guide my career by sharing their ideas, protocols, skills, and enthusiasm. In looking back at the journey, the supply chain in my career has also included changes in the conceptual framework for my research studies, converging with a continuous flow of ideas and support from colleagues and mentors. To illustrate the complex map of ideas and supporters, this paper will examine technological advances, paradigm shifts in ecological constructs, geographical considerations, breakthroughs in peritrich biology, and the importance of an integrated perspective as we navigate the changing realities of today's scientific challenges.

4.
mBio ; : e0082724, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975782

ABSTRACT

Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.

5.
Semina cienc. biol. saude ; 45(1): 45-56, jan./jun. 2024. tab; ilus
Article in English | LILACS | ID: biblio-1554899

ABSTRACT

Enteroparasitosis are diseases caused by parasitic agents present in the environment and in the gastrointestinal tract of living beings. In addition, they are still considered neglected diseases, but of great importance for public health, especially when they are related to secondary infections and currently their co-infection profile with COVID-19. The interaction of protozoa and/or helminths with the SARS-CoV-2 virus is timely and its signs and symptoms are confused with other pathogen relationships. In this way, this study aims to correlate the incidence of enteroparasitosis and COVID-19, in the pandemic period from 2020 to April 2022. This is a documentary and exploratory study of secondary data from laboratory tests of patients who were treated and diagnosed with COVID-19 and enteroparasitosis at Hospital Doutor Cloves Bezerra Cavalcante, Municipal Hospital of Bananeiras, Paraíba, Brazil. In the analysis of the database, a significant increase of approximately 48.85% in the incidence of COVID-19 cases from 2020 to 2021 stands out, remaining high until 2022. In contrast, cases of enteroparasites peaked at 48.74% in 2021, followed by an average reduction of 23.12%, with a deviation of 1.49%, in relation to the years 2020 and 2022. It was concluded that COVID-19 is predominantly associated with an increase in secondary infections, highlighting the crucial need to promote health education, improve basic sanitation and guarantee access to health services as essential components in combating the increase in parasitic infections, especially those related to viral pathologies.


As enteroparasitoses são enfermidades originadas por agentes parasitários presentes no meio ambiente e no trato gastrointestinal dos seres vivos. Ademais, ainda são consideradas doenças negligenciadas, porém de grande importância para a saúde pública, em especial, quando estão relacionadas com infecções secundárias e atualmente seu perfil de coinfecção com a COVID-19. A interação de protozoários e/ou helmintos com o vírus SARS-CoV-2 é oportuna e seus sinais e sintomas são confundidos com outras relações de patógenos. Desta maneira, este estudo visa correlacionar a incidência de enteroparasitoses e COVID-19, no período pandêmico de 2020 a abril de 2022. Trata--se de uma pesquisa documental e exploratória, de dados secundários dos exames laboratoriais de pacientes que foram atendidos e diagnosticados com COVID-19 e enteroparasitoses no Hospital Doutor Cloves Bezerra Cavalcante, Hospital Municipal de Bananeiras, Paraíba, Brasil. Na análise da base de dados, destaca-se um aumento significativo de aproximadamente 48,85% na incidência de casos de COVID-19 de 2020 a 2021, mantendo-se elevado até 2022. Em contraste, os casos de enteroparasitas atingiram um pico de 48,74% em 2021, seguido por uma redução média de 23,12%, com um desvio de 1,49%, em relação aos anos de 2020 e 2022. Conclui-se que a COVID-19 está predominantemente associada ao aumento de infecções secundárias, destacando a necessidade crucial de promover a educação em saúde, melhorar o saneamento básico e garantir o acesso aos serviços de saúde como componentes essenciais no combate ao aumento de infecções parasitárias, especialmente aquelas relacionadas a patologias virais.


Subject(s)
Humans , Male , Female
6.
Sci Total Environ ; 946: 174306, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942318

ABSTRACT

Arid regions harbor seasonal and permanent wetlands, as biodiversity hotspots crucial for ecosystem services despite harsh conditions. These wetlands, typically dependent on episodic intense rainfall, are understudied compared to their humid counterparts. While the diversity of plants and animals in these wetlands is well-known, the microbial communities remain largely unexplored. To address this knowledge gap, we employed metagenome sequencing technologies to profile protist communities, including pathogenic protozoa, and their associated functional pathways, in sediment of permanent and seasonal arid freshwater wetlands across northern South Africa. Results revealed a core community of protists dominated by phylum Apicomplexa (66.73 %), Euglenazoa (19.03 %), Bacillariophyta (5.44 %), Metamonada (4.65 %), Cryptophyta (1.90 %), and Amoebazoa (1.21 %). Seasonal wetlands showed significantly higher protist diversity compared to permanent wetlands (Shannon index, p = 0.019; Chao1, p = 0.0095). A high abundance and diversity of human and zoonotic pathogenic protists (87.67 %) was observed, with lower levels of photoautotrophs (6.69 %) and limited diversity of phagotrophs (5.64 %). Key photoautotrophs identified included diatoms (Thalassiosiraceae and Phaeodactylaceae) and cryptophytes (genus Hemiselmis and Cryptophyta), with consumers/phagotrophs exhibited a correlation with the bacterial community abundance (r2 = 0.218, p < 0.001). Pathogenic protozoans identified, include malaria-causing Plasmodium, kinetoplastids (genus Besnoita, Theilleria, Neospora, Toxoplasma, Encephalitozoon, and Babesia) and waterborne protozoans of public health importance (such as Cryptosporidium parvum and Giardia lamblia). Furthermore, the enrichment of pathogenesis-associated pathways (amino acid biosynthesis, peptidoglycan maturation, heme biosynthesis and degradation, and the Calvin-Benson-Bassham cycle), along with virulence gene families identified, highlighted these wetlands as potential reservoirs for infectious diseases. Our results unveil a baseline protist taxonomic and functional composition within arid wetlands, including beneficial and pathogenic protozoa. The close proximity of these wetlands to human activity raises concern for local and transboundary spread of these pathogens. Thus, continued monitoring is vital for disease control and preserving these unique ecosystems.

7.
J Fish Dis ; : e13991, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943443

ABSTRACT

Alternatives to conventional chemical treatments for parasitic diseases in fish are needed. Microalgal-sourced fatty acid ethyl esters (FAEEs) have shown an antiparasitic effect against Gyrodactylus turnbulli infection in guppies. Here, we tested a range of commercial FAEEs of various carbon chain lengths and unsaturation levels against two fish parasites. Guppies and barramundi infected with G. turnbulli and Trichodina sp., respectively, were used. The most effective FAEE, after excluding those toxic to fish, was ethyl laurate (12:0). For both parasites, the LD50 was 18.75 µM within 250 min of incubation. Ethyl eicosapentaenoate (20:5n3) was the next most effective FAEE against G. turnbulli, and dihomo-γ-linolenic acid ethyl ester (20:3n6) and ethyl α-linolenate (18:3n3) were the next most effective against Trichodina sp. In addition, FAEEs prepared from the microalga Phaeodactylum tricornutum residue, after fucoxanthin extraction, were examined against Trichodina sp. infection in barramundi for the first time. LD85 and LD100 was achieved at 2.5 and 5 µL mL-1 of the FAEE preparation, respectively. In vivo, immersion of infected barramundi in 1.25 µL mL-1 of this preparation for 24 h reduced infection prevalence from 100% to 53% and was non-toxic to fish.

8.
Biomolecules ; 14(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927073

ABSTRACT

Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.


Subject(s)
Mitochondria , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Mitochondria/metabolism , Animals , Oxidative Stress , Infections/metabolism , Infections/immunology , Immunity
9.
Infect Genet Evol ; 122: 105614, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844191

ABSTRACT

Cryptosporidiosis is an infectious enteric disease caused by species (some of them zoonotic) of the genus Cryptosporidium that in many countries are under surveillance. Typing assays critical to the surveillance of cryptosporidiosis typically involve characterization of Cryptosporidium glycoprotein 60 genes (gp60). Here, we characterized the gp60 of Cryptosporidium suis from two samples-a human and a porcine faecal sample-based on which a preliminary typing scheme was developed. A conspicuous feature of the C. suis gp60 was a novel type of tandem repeats located in the 5' end of the gene and that took up 777/1635 bp (48%) of the gene. The C. suis gp60 lacked the classical poly-serine repeats (TCA/TCG/TCT), which is usually subject to major genetic variation, and the length of the tandem repeat made a typing assay incorporating this region based on Sanger sequencing practically unfeasible. We therefore designed a typing assay based on the post-repeat region only and applied it to C. suis-positive samples from suid hosts from Norway, Denmark, and Spain. We were able to distinguish three different subtypes; XXVa-1, XXVa-2, and XXVa-3. Subtype XXVa-1 had a wider geographic distribution than the other subtypes and was also observed in the human sample. We think that the present data will inform future strategies to develop a C. suis typing assay that could be even more informative by including a greater part of the gene, including the tandem repeat region, e.g., by the use of long-read next-generation sequencing.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Tandem Repeat Sequences , Animals , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Swine , Humans , Cryptosporidium/genetics , Cryptosporidium/classification , Phylogeny , Swine Diseases/parasitology , Protozoan Proteins/genetics , Feces/parasitology
10.
Pathogens ; 13(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921741

ABSTRACT

The inland bearded dragon (Pogona vitticeps) is a lizard species commonly kept as a pet worldwide. Endoparasites are among the most important pathogens affecting bearded dragons. The aim of this study was to evaluate the endoparasites in captive P. vitticeps in Italy. Faecal samples from 30 P. vitticeps were analysed by fresh faecal smears, flotation tests, the Mini-FLOTAC technique, and a rapid immunoassay to detect Cryptosporidium spp. To search for microsporidia, PCR and sequencing were performed on the faecal samples. Data were statistically analysed. The overall positivity rate for endoparasites was 83.3% (25/30). The identified endoparasites were oxyurids (17/30, 56.7%), Isosospora amphiboluri (13/30, 43.3%), Encephalitozoon pogonae (4/18, 22.22%), and Cryptosporidium sp. (1/30, 3.33%). The positivity for protozoa was significantly higher in juveniles compared to adults. Moreover, the frequency of clinical signs was significantly higher in the positive animals. The results obtained here emphasize the importance of regular veterinary examinations of captive P. vitticeps, aimed at the diagnosis, treatment, and control of endoparasites. This study is one of the largest surveys on microsporidia infections in living bearded dragons, suggesting that E. pogonae may be widespread in this lizard.

11.
Vet World ; 17(5): 1139-1148, 2024 May.
Article in English | MEDLINE | ID: mdl-38911071

ABSTRACT

Background and Aim: In the livestock sector, particularly ruminants, an approach to minimize methane emissions can be carried out through a feeding strategy involving herbal plants containing bioactive compounds that can reduce protozoa and decrease methane gas emissions. The aim of this in vitro study was to analyze the effects of herbal plant supplementation on rumen fermentation, total gas, and methane production, in vitro dry matter digestibility (IVDMD), in vitro organic matter digestibility (IVOMD), and protozoa populations within the rumen. Materials and Methods: Two experiments were conducted in this study. Experiment 1 was conducted to determine the most promising herbal plants capable of increasing total gas production and reducing protozoan populations. Three potential herbals selected in Experiment 1 were continued in Experiment 2 as supplements in the palm kernel meal (PKM)-based ration (70% PKM + 30% herbal plants). Results: Experiment 1 revealed that Eurycoma longifolia (EL), Cola acuminata (CLA), and Cassia alata (CSA) were potential herbal candidates for enhancing total gas production and the percentages of IVDMD and IVOMD. In Experiment 2, supplementation with EL, CLA, and CSA significantly increased IVDMD from 62.84% to 70.15%, IVOMD from 61.61% to 53.18%, and NH3 from 13 mM to 17 mM, as well as reduced partial volatile fatty acids and total gas production. In addition, the methane gas and protozoan populations were reduced. Conclusion: The utilization of EL, CLA, and CSA effectively increased the production of total gas, IVDMD, and IVOMD while reducing methane gas protozoa populations in rumen fermentation compared with the control.

12.
Int J Food Microbiol ; 421: 110780, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38909489

ABSTRACT

Several wild game meat species, including deer and feral pigs are hunted and consumed in Australia. Feral pigs and deer are not indigenous to Australia, but they have proliferated extensively and established their presence in every state and territory. Following the report of a sambar deer displaying Sarcocystis like white cysts in its rump muscles, the present study was conducted to explore the prevalence of Sarcocystis infections in wild deer and feral pigs in the southeastern regions of Australia. Oesophagus, diaphragm, and heart tissue from 90 deer and eight feral pigs were examined visually for sarcocysts. All results were negative. PCR testing of randomly selected deer and feral pigs yielded positive results, which were subsequently supported by histopathology. This is the first study to report the presence of Sarcocystis spp. in deer and feral pigs in Australia. As no visual cysts were found on the heart or oesophagus that came back positive with PCR, infected animals, particularly those reared free-range, could be passing through meat quality checks unidentified. If people consume this meat without cooking it properly, it may lead to a human infection of Sarcocystis. However, a more targeted study focused on determining the parasite's prevalence and assessing its risks is necessary to determine if it constitutes a food safety issue. As this species has been found not only in feral pigs but also in domestic pigs, the potential for infection spreading between feral pigs and pigs in free-range livestock systems is high, potentially posing a large problem for the Australian pork industry, particularly with the increased emphasis on free-range pig husbandry. Future studies should concentrate on determining the species of Sarcocystis in feral animals commonly consumed as game meat to determine potential zoonotic risks. This could also include a more in-depth look at the prevalence of Sarcocystis infections in other game animals. Identifying where these parasites are present and to what extent, are important areas for future studies.


Subject(s)
Animals, Wild , Deer , Meat , Sarcocystis , Sarcocystosis , Swine Diseases , Animals , Sarcocystis/isolation & purification , Sarcocystis/genetics , Sarcocystis/classification , Deer/parasitology , Australia/epidemiology , Swine , Sarcocystosis/epidemiology , Sarcocystosis/veterinary , Sarcocystosis/parasitology , Animals, Wild/parasitology , Swine Diseases/parasitology , Swine Diseases/epidemiology , Meat/parasitology , Prevalence , Humans
13.
Imeta ; 3(1): e161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868509

ABSTRACT

Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C-degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro-food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro-food web features by using soil enzyme profile analysis.

14.
Vet Parasitol Reg Stud Reports ; 52: 101048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880578

ABSTRACT

Non-human primates (NHPs) are the group that most share infectious agents with humans due to their close taxonomic relationship. The southern brown howler monkeys (Alouatta guariba clamitans) are endemic primates from Brazil and Argentina's Atlantic Forest. This study aimed to investigate the presence of intestinal parasites in free-living (FL) and captive (CA) southern brown howler monkeys. Thirty-nine stool samples were collected in two areas in southern Brazil, 15 FL and 24 CA. Stool sediments obtained by centrifugal sedimentation technique were used for microscopic analysis and direct immunofluorescence assay and evaluated by molecular analysis through amplification and sequencing of TPI fragments. Intestinal parasites Giardia duodenalis, Cryptosporidium spp., and Trypanoxyuris minutus were detected at coproparasitological analysis. This is the first report of the presence of Cryptosporidium spp. in free-living howlers. The molecular characterization of G. duodenalis isolates indicated assemblage B for the first time found in free-living A. guariba clamitans. The high prevalence of G. duodenalis transmission in CA howler monkeys can be explained by direct contact with humans and frequent soil contact. The presence of a potentially zoonotic assemblage in these animals indicates that the process of fragmentation and cohabitation with humans and livestock affects the wildlife, thus indicating a need for eco-health measures.


Subject(s)
Alouatta , Giardia lamblia , Giardiasis , Monkey Diseases , Animals , Alouatta/parasitology , Brazil/epidemiology , Monkey Diseases/parasitology , Monkey Diseases/epidemiology , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/epidemiology , Giardia lamblia/isolation & purification , Giardia lamblia/genetics , Giardia lamblia/classification , Feces/parasitology , Animals, Zoo/parasitology , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Cryptosporidium/genetics , Prevalence , Male , Animals, Wild/parasitology , Female , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology
15.
Front Vet Sci ; 11: 1392618, 2024.
Article in English | MEDLINE | ID: mdl-38903682

ABSTRACT

Background: Sarcocystis includes a global group of apicomplexan parasites with two-host life cycle frequently circulating in wildlife and domestic hosts, including humans. Two of the most important wild terrestrial carnivores acting as definitive hosts are the red fox and raccoon dog, due to their wide distribution in Europe and usage of wild and farmed animals as prey. This study was conducted to determine the prevalence of Sarcocystis in hunted red foxes and raccoon dogs from nine regions of the Czech Republic and to identify isolated sporocysts by molecular techniques. Methods: Approximately 5 g of the contents of large intestine from 200 animals (197 red foxes and three raccoon dogs) were examined by flotation centrifugation coprological method. Only samples of 50 red foxes and one raccoon dog positive to Sarcocystis spp. were used for the nested PCR (nPCR) method to amplify a fragment or partial sequence on the cox1 gene. Ten species-specific primer pairs for detection of Sarcocystis spp. using farm animals as intermediate hosts were utilized. Results: In total, 38.1% of the red foxes and 66.7% of the raccoon dogs were positive to Sarcocystis by light microscopy. The molecular characterization resulted in the identification of five species in the red fox: S. arieticanis, S. capracanis, S. cruzi, S. miescheriana, and S. tenella, while the PCR was negative for the sole raccoon dog. The highest intraspecific variation was found for S. miescheriana, while S. tenella was the most prevalent. Co-infections occurred in the large intestine of the red fox. No zoonotic species were found in our samples. Conclusion: This is the first study where the potential role of the red fox and raccoon dogs as spreaders of Sarcocystis to farm animals in the Czech Republic is shown. The use of species-specific primers provides a fast and easy method for screening multiple samples for a particular Sarcocystis species.

16.
J Hazard Mater ; 476: 134958, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38905974

ABSTRACT

As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.

17.
Microbiol Mol Biol Rev ; : e0003724, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869292

ABSTRACT

SUMMARYExtracellular vesicles (EVs) have been recognized throughout scientific communities as potential vehicles of intercellular communication in both eukaryotes and prokaryotes, thereby influencing various physiological and pathological functions of both parent and recipient cells. This review provides an in-depth exploration of the multifaceted roles of EVs in the context of bacteria and protozoan parasite EVs, shedding light on their contributions to physiological processes and disease pathogenesis. These studies highlight EVs as a conserved mechanism of cellular communication, which may lead us to important breakthroughs in our understanding of infection, mechanisms of pathogenesis, and as indicators of disease. Furthermore, EVs are involved in host-microbe interactions, offering insights into the strategies employed by bacteria and protozoan parasites to modulate host responses, evade the immune system, and establish infections.

18.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825100

ABSTRACT

The purpose of this experiment was to determine if nicotinic acid (NA) effects on dairy cows and rumen microbial characteristics are forage type dependent (corn silage, CS; grass silage, GS). Four late lactation (days in milk = 225 +/- 12 d) Holstein cows were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. The main effects were a CS (66.10% CS) based diet or a GS (79.59%) based diet with or without 12 g/d NA. Each experimental period lasted for 28 d. Milk production and milk components, blood metabolites, apparent total-tract nutrient digestibilities, minutes rumen pH were below 5.8 as an indicator of ruminal acidosis, and body temperature changes were analyzed as indicators of heat stress. Nicotinic acid supplementation did not improve apparent total-tract nutrient digestibility. Feeding a GS-based diet improved NDF and hemicellulose digestibility. Feeding a CS-based diet increased the apparent total-tract digestibility of fat, and minutes rumen pH below 5.8 for a greater proportion of the time. The CS-based diet also improved milk yield, milk fat and protein yields, and energy-corrected milk yield; however, somatic cell count and BHB were also increased. Supplementing NA tended to decrease nonesterified fatty acids, especially when combined with GS where DMI was low. There was a trend for the total protozoa population to increase when GS and NA were fed but decreased when CS and NA were fed. Nicotinic acid tended to decrease rumen protozoal populations of Dasytricha, but increased populations of Ophryoscolex and Diplodiniinae with GS diets and decreased with CS diets. Entodiniinae were increased with CS but NA had no effect. Body temperature was increased when a CS-based diet was fed when compared with a GS-based diet. More research is needed to determine how NA can affect rumen microbial protein synthesis and what kind of diets will provide the optimum effect.

19.
J Water Health ; 22(5): 905-922, 2024 May.
Article in English | MEDLINE | ID: mdl-38822469

ABSTRACT

This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.


Subject(s)
Drinking Water , Osmosis , Water Purification , Egypt , Water Purification/methods , Drinking Water/microbiology , Drinking Water/parasitology , Water Quality , Water Microbiology , Filtration/instrumentation , Filtration/methods , Water Supply
20.
Essays Biochem ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938216

ABSTRACT

The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...