Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 625
Filter
1.
Saudi Med J ; 45(5): 458-467, 2024 May.
Article in English | MEDLINE | ID: mdl-38734425

ABSTRACT

The aim of this study was to go through the molecular methods used for typing of carbapenem-resistant Acientobacter baumannii (CRAB) isolates for investigating the molecular epidemiology all over the world. Multiple typing techniques are required to understand the source and nature of outbreaks caused by Acientobacter baumannii (A. baumannii) and acquired resistance to antimicrobials. Nowadays, there is gradual shift from traditional typing methods to modern molecular methods to study molecular epidemiology and infection control. Molecular typing of A. baumannii strains has been revolutionized significantly in the last 2 decades. A few sequencing-based techniques have been proven as a breakthrough and opened new prospects, which have not been achieved by the traditional methods. In this review, discussed different pre-existing and recently used typing methods to explore the molecular epidemiology of A. baumannii pertaining in context with human infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Molecular Epidemiology , Molecular Typing , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Humans , Molecular Epidemiology/methods , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Molecular Typing/methods , Bacterial Typing Techniques/methods
2.
Foodborne Pathog Dis ; 21(6): 378-385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557159

ABSTRACT

The urgent need for comprehensive and systematic analyses of Shigella as the key pathogen led us to meticulously explore the epidemiology and molecular attributes of Shigella isolates. Accordingly, we procured 24 isolates (10 from Xinjiang and 14 from Wuhan, China) and performed serotype identification and antimicrobial susceptibility testing. Resistance gene detection and homology analysis by polymerase chain reaction and pulsed-field gel electrophoresis (PFGE), respectively, were performed for genetic diversity analysis. All isolates were identified as Shigella flexneri, with 70% (35.4-91.9%) and 30% (8.1-64.6%) of the Xinjiang isolates and 85.7% (56.2-97.5%) and 14.3% (2/14, 2.5-43.9%) of the Wuhan isolates belonging to serotype 2a and serotype 2b, respectively. All isolates displayed resistance to at least two antibiotics and complete resistance to ampicillin. Multidrug resistance (MDR) was recorded in 70.8% (48.8-86.6%) of isolates, with Xinjiang isolates exhibiting relatively higher resistance to ampicillin-sulbactam, piperacillin, ceftriaxone, and aztreonam. Conversely, Wuhan isolates displayed higher MDR and resistance to tetracycline, ciprofloxacin, levofloxacin, and cefepime relative to Xinjiang isolates. Molecular scrutiny of antibiotic-resistance determinants revealed that blaTEM was the main mechanism of ampicillin resistance, blaCTX-M was the main gene for resistance to third- and fourth-generation cephalosporins, and tetB was the predominant gene associated with tetracycline resistance. Four Xinjiang and seven Wuhan isolates shared T1-clone types (>85%), and two Xinjiang and one Wuhan isolates were derived from the T6 clone with a high similarity of 87%. Six PFGE patterns (T1, T2, T5, T6-3, T8, and T10) of S. flexneri were associated with MDR. Thus, there is a critical need for robust surveillance and control strategies in managing Shigella infections, along with the development of targeted interventions and antimicrobial stewardship programs tailored to the distinct characteristics of Shigella isolates in different regions of China.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Dysentery, Bacillary , Electrophoresis, Gel, Pulsed-Field , Genetic Variation , Microbial Sensitivity Tests , Shigella flexneri , China/epidemiology , Anti-Bacterial Agents/pharmacology , Humans , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Shigella flexneri/drug effects , Shigella flexneri/genetics , Shigella flexneri/isolation & purification , Shigella flexneri/classification , Shigella/genetics , Shigella/drug effects , Shigella/isolation & purification , Shigella/classification , Serogroup , Polymerase Chain Reaction
3.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38460954

ABSTRACT

AIM: This study examined Listeria monocytogenes isolates from two slaughterhouses in Burdur province, southern Turkey, over four seasons for antibiotic resistance, serogroups, virulence genes, in vitro biofilm forming capacity, and genetic relatedness. METHODS AND RESULTS: Carcass (540) and environment-equipment surface (180) samples were collected from two slaughterhouses (S1, S2) for 1 year (4 samplings). Of the 89 (12.4%) positive isolates, 48 (53.9%) were from animal carcasses, and 41 (46.1%) from the environment-equipment surfaces. Autumn was the peak season for Listeria monocytogenes compared to summer and spring (P < 0.05). In addition, the most common serotype between seasons was 1/2c. Except for plcA and luxS genes, all isolates (100%) harbored inlA, inlC, inlJ, hlyA, actA, iap, flaA genes. Listeria monocytogenes isolates were identified as belonging to IIc (1/2c-3c; 68.5%), IVb (4b-4d-4e; 29.2%), and IIa (1/2a-3a; 2.2%) in the screening using multiplex polymerase chain reaction-based serogrouping test. A total of 65 pulsotypes and 13 clusters with at least 80% homology were determined by using pulsed field gel electrophoresis on samples that had been digested with ApaI. Thirty-four (38.2%) of the isolates were not resistant to any of the 14 antibiotics tested. The antibiotic to which the isolates showed the most resistance was rifampicin (44.9%). Serotype 1/2c was the most resistant serotype to antibiotics. Despite having biofilm-associated genes (inlA, inlB, actA, flaA, and luxS), a minority (11%) of isolates formed weak biofilm. CONCLUSION: This study revealed seasonal changes prevalence of Listeria monocytogenes, particularly higher in autumn, posing a greater risk of meat contamination. Notably, Serotype 1/2c showed significant prevalence and antibiotic resistance. Indistinguishable isolates indicated cross-contamination, underscoring the importance of prioritized training for slaughterhouse personnel in sanitation and hygiene protocols.


Subject(s)
Listeria monocytogenes , Animals , Seasons , Abattoirs , Food Microbiology , Prevalence , Anti-Bacterial Agents/pharmacology , Serotyping
4.
Infect Drug Resist ; 17: 969-976, 2024.
Article in English | MEDLINE | ID: mdl-38495627

ABSTRACT

Background: This study aimed to provide epidemiological features of Salmonella enterica serovar Rissen, determine antimicrobial susceptibility, virulence gene profiles, and describe the potential association of S. Rissen from different sources in China. Methods: During 2008-2019, a total of non-repetitive 228 S. Rissen isolates were collected from human, animals and environment in China. The antimicrobial susceptibility test, screening of antimicrobial and virulence genes by PCR, and pulsed-field gel electrophoresis (PFGE) were performed. Results: Among the 154 isolates from human, the majority of the cases (80.5%) occurred in summer, and S. Rissen was mainly detected in people aged 21-40 (37.7%) and 41-60 (28.6%) years old, and 74 non-human source S. Rissen strains were identified, with pork being the most common source. About 93.4% isolates were resistant to at least one of the 12 tested antimicrobial agents, and high frequencies of resistance were observed for tetracyclines (91.2%), trimethoprim-sulfamethoxazole (74.1%) and ampicillin (67.5%). A total of 171 (75%) isolates were resistant to at least three categories of antimicrobials, and the most common resistance profile was Tetracycline(s)-ß-Lactams-Sulfonamides. The resistance rates to chloramphenicol, quinolones and sulfafurazole were significantly higher in strains isolated from human compared to non-human source strains. Among these isolates, the ß-Lactams resistance was mainly associated with gene blaTEM (54.7%), sulfonamide resistance with sul2 (45.7%) and sul3 (54.3%), tetracycline resistance with tetA (81.3%). All the isolates harbored virulence genes hilA, sopB, sciN, stn and ssrB, and most of them harbored ssaQ (98.7%), mgtC (98.7%) and invA (98.2%). The majority (91.7%) of S. Rissen isolates showed high similarity (>80%) with each other in PFGE patterns and came from human, animals and environment. Conclusion: The high frequencies of multidrug resistance and probable clonal dissemination in this serovar call for the necessity of systematic surveillance on S. Rissen in China.

5.
Nutrition ; 121: 112353, 2024 May.
Article in English | MEDLINE | ID: mdl-38402669

ABSTRACT

OBJECTIVE: The same microbial species isolated from blood simultaneously drawn from a central venous catheter hub and a peripheral vein (paired blood cultures) during parenteral nutrition may be assumed to represent the same strain. This case report provides an example of this assumption being incorrect along with a comparator example of it being correct. This has implications for interpretation of differential time to positivity and differential quantitative blood cultures during investigation of suspected intraluminal intravascular catheter or cannula bloodstream infection. CASE DESCRIPTION: Two patients ages ≥18 y prescribed parenteral nutrition each had positive paired blood cultures that had been taken for suspected catheter bloodstream infection because of temperature spikes ≥38°C. The paired Staphylococcus epidermidis isolates from the first patient and the paired Enterococcus faecium isolates from the second patient were each tested beyond routine clinical care to establish if they could be different strains. The central and peripheral isolates of Staphylococcus epidermidis from the first patient were different strains based on hospital-reported antibiograms, genomic DNA profiles, thermograms, and weaker growth and different sizes of colonies of the central strain compared with the peripheral strain. There were no such differences for the isolates of Enterococcus faecium from the second patient. RESULTS: The central and peripheral isolates of Staphylococcus epidermidis from the first patient were different strains based on hospital-reported antibiograms, genomic DNA profiles, thermograms, and weaker growth and different sizes of colonies of the central strain compared with the peripheral strain. There were no such differences for the isolates of Enterococcus faecium from the second patient. CONCLUSION: This case report indicates consideration should be given to reporting whether bacteria have been identified at either species or strain level if differential time to positivity or differential quantitative blood cultures are used to define catheter or cannula bloodstream infection.


Subject(s)
Bacteremia , Sepsis , Humans , Blood Culture , Bacteremia/microbiology , Sepsis/complications , Catheters/adverse effects , DNA , Parenteral Nutrition/adverse effects
6.
Microbiol Spectr ; 12(1): e0244423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38100166

ABSTRACT

IMPORTANCE: Our study emphasizes the efficacy of whole-genome sequencing (WGS) in addressing outbreaks of vancomycin-resistant enterococci. WGS enables the identification and tracking of resistant bacterial strains, early detection and management of novel infectious disease outbreaks, and the appropriate selection and use of antibiotics. Furthermore, our approach deepens our understanding of how resistant bacteria transfer genes and adapt to their environments or hosts. For modern medicine, these insights have significant implications for controlling infections and effectively managing antibiotic use in the current era, where antibiotic resistance is progressing.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin-Resistant Enterococci/genetics , Molecular Epidemiology , Vancomycin/pharmacology , Vancomycin/therapeutic use , Enterococcus faecium/genetics , Japan/epidemiology , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Bacterial Proteins/genetics
7.
Access Microbiol ; 5(11)2023.
Article in English | MEDLINE | ID: mdl-38074106

ABSTRACT

Acinetobacter baumannii poses a significant challenge in healthcare settings across the globe, with isolates exhibiting carbapenem resistance at unprecedented rates. Here, we characterized a collection of A. baumannii isolates (n=64) recovered during the period September 2020 - November 2021 at a teaching hospital in Cochin, South India. The species identity of the isolates was confirmed with bla OXA-51-like PCR. The major carbapenemase determinants identified were bla OXA-23-like (45, 70.3 %) and bla NDM-1 (31, 48.4 %); co-occurrence of these genes was also observed in 27 (42.2 %) isolates. Other resistance genes identified included bla PER (34, 53.1 %), aac(6')-Ib-cr (42, 65.6 %), qnrS (25, 39.1 %), sul1 (32, 50 %), sul2 (33, 51.6 %), strA/strB (36, 56.3 %), aphA1-Iab (35, 54.7 %) and tetB (32, 50 %). Mapping PCR revealed the insertion element, ISAbaI upstream of bla OXA-23-like in all isolates possessing this gene. Concerning disinfectant resistance, all isolates carried the quaternary ammonium compound (QAC) resistance gene, qacEΔ1. Minimal inhibitory concentration (MIC) of benzalkonium chloride was high among the isolates and ranged from 8 to 128 µg ml-1. However, low MICs were observed for chlorhexidine and triclosan, with the majority (54, 80.6 %) of isolates showing an MIC of 2 µg ml-1 for chlorhexidine and all isolates exhibiting MICs of ≤0.125 µg ml-1 for triclosan. Further, all isolates were strong biofilm-producers, as assessed by the crystal violet-based microtitre plate assay. The ApaI-pulsed-field gel electrophoresis (PFGE) revealed the multi-clonal nature of the isolates, with 16 clusters and 16 unique pulsotypes identified at a cut-off of 80 %. In short, this study provides useful data on the molecular features of A. baumannii from this region, which could be helpful to assess the local epidemiology of this pathogen and also to devise infection control strategies.

8.
Int. microbiol ; 26(4): 1073-1085, Nov. 2023. ilus, graf
Article in English | IBECS | ID: ibc-227493

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP), as one of the most common drug-resistant bacteria threatening human health, is hyper-resistant to multiple antimicrobial drugs and carbapenems, which can be dealt with only limited clinical treatment options. This study described the epidemiological characteristics of CRKP in this tertiary care hospital from 2016 to 2020. Specimen sources included blood, sputum, alveolar lavage fluid, puncture fluid, secretions from a burn wound, and urine. Among the 87 carbapenem-resistant strains, ST11 was the predominant isolate, followed by ST15, ST273, ST340, and ST626. These STs were in broad agreement with the STs defined by pulsed-field gel electrophoresis clustering analysis in discriminating clusters of related strains. Most CRKP isolates contained the blaKPC-2 gene, some isolates carried the blaOXA-1, blaNDM-1, and blaNDM-5 genes, and the isolates carrying carbapenem resistance genes were more resistant to the antimicrobials of β-lactams, carbapenems, macrolides, and fluoroquinolone. The OmpK35 and OmpK37 genes were detected in all CRKP strains, and the Ompk36 gene was detected in some CRKP strains. All detected OmpK37 had 4 mutant sites, and OmpK36 had 11 mutant sites, while no mutant sites were found in OmpK35. More than half of the CRKP strains contained the OqxA and OqxB efflux pump genes. The virulence genes were most commonly combined with urea-wabG-fimH-entB-ybtS-uge-ycf. Only one CRKP isolate was detected with the K54 podoconjugate serotype. This study elucidated the clinical epidemiological features and molecular typing of CRKP, and grasped the distribution of drug-resistant genotypes, podocyte serotypes, and virulence genes of CRKP, providing some guidance for the subsequent treatment of CRKP infection.(AU)


Subject(s)
Humans , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Klebsiella Infections/epidemiology , beta-Lactamases/genetics , Virulence/genetics , Microbiology , Microbiological Techniques , China , Drug Resistance , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Carbapenems
9.
Foodborne Pathog Dis ; 20(12): 570-578, 2023 12.
Article in English | MEDLINE | ID: mdl-37722022

ABSTRACT

Milk is an important source of food, and it is also a nutrient-rich medium, which can harbor multiple microorganisms. Staphylococcus aureus is an important foodborne pathogen in food-producing animals, and there have been many reports on its infection and antimicrobial resistance (AMR), which has significant global public health concerns. This study was designed to isolate, characterize, and analyze the AMR pattern of S. aureus from milk samples collected in Chennai, India. A total of 259 raw milk samples from 3 groups: dairy farms, local vendors, and retail outlets were analyzed, and it was found that 34% (89/259) were positive for S. aureus. Positive isolates were further characterized by pulsed-field gel electrophoresis and isolates recovered from different sources, study areas, and locations showed high genetic diversity with no similarity. The presence of AMR has been further assessed by phenotypic methods as per CLSI-M100 performance standards, and all the isolates were susceptible to ampicillin/sulbactam, mupirocin, and tylosin. Additionally, all of the isolates were resistant to ampicillin. There were 28 isolates categorized as multidrug-resistant, which showed resistance to more than 2-3 classes of antimicrobials. This is the first report of inducible clindamycin resistance and mupirocin sensitivity pattern from S. aureus isolates recovered from milk. This study established the occurrence varied with genetic diversity in the isolates prevalent in the study area and divergence pattern of AMR S. aureus. The AMR in these isolates and with methicillin-resistant S. aureus could pose a serious threat to food safety and economic implications.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Milk , Mupirocin , Prevalence , Microbial Sensitivity Tests , India/epidemiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Ampicillin
10.
Pathogens ; 12(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513813

ABSTRACT

For decades now, DNA fingerprinting by means of pulsed-field gel electrophoresis (PFGE) continues to be the most widely used to separate large DNA molecules and distinguish between different strains in alternating pulses. This is done by isolating intact chromosomal DNA and using restriction enzymes with specific restriction sites to generate less than 30 restriction fragments from 50 Kb to 10 Mbp. These results make clone-specific band profiles easy to compare. Specialized equipment is required for the optimization of DNA separation and resolution, among which a contour-clamped homogeneous electric field (CHEF) apparatus is the most commonly used. As a result, the PFGE analysis of a bacterial genome provides useful information in terms of epidemiological investigations of different bacterial pathogens. For Staphylococcus aureus subtyping, despite its limitations and the emergence of alternative methods, PFGE analysis has proven to be an adequate choice and the gold standard for determining genetic relatedness, especially in outbreak detection and short-term surveillance in the veterinary field.

11.
J Vet Med Sci ; 85(9): 937-941, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37438115

ABSTRACT

Wildlife in urban areas have the potential to disseminate antimicrobial-resistant bacteria (ARB) across a wider environment. Using antimicrobial-supplemented agar plates, we isolated extended-spectrum ß-lactamase-producing Escherichia coli (EEC) and quinolone-resistant E. coli (QREC) from 144, 23, and 30 deer feces from Nara Park (NP), rural area neighboring NP (RA), and Mt. Odaigahara (MO), respectively. In NP and RA, the prevalence of EEC was 24.3 and 4.3%, respectively; that of QREC was 11.1 and 17.4%, respectively. Neither EEC nor QREC were detected in MO. The pulsotypes of EEC and QREC isolates differed between NP and RA. Our study suggests that deer of the Nara Prefecture are potential carriers of ARB, but long-distance dissemination is unlikely due to limited deer movement.


Subject(s)
Anti-Infective Agents , Deer , Escherichia coli Infections , Quinolones , Animals , Escherichia coli , Quinolones/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Japan/epidemiology , Angiotensin Receptor Antagonists , beta-Lactamases , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary
12.
J Fish Dis ; 46(11): 1239-1248, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37519120

ABSTRACT

Elizabethkingia meningoseptica is a hazardous bacterium for agriculture production and human health. The present study identified E. meningoseptica from the bullfrog, human and reference strain BCRC 10677 by API 20NE, 50S ribosome protein L27 sequencing and pulse field gel electrophoresis to differentiate isolates of E. meningoseptica from aquatic animals and humans. All isolates from bullfrogs and humans were identified as E. meningoseptica by DNA sequencing with 98.8%-100% sequence identity. E. meningoseptica displayed significant genetic diversity when analysed using pulsed-field gel electrophoresis (PFGE). There were six distinct pulsotypes, including one pulsotype found in bullfrog isolates and five pulsotypes found in human isolates. However, E. meningoseptica from bullfrog exhibited one genotype only by PFGE. Overall, molecular epidemiological analysis of PFGE results indicated that the frog E. meningoseptica outbreaks in Taiwan were produced by genetically identical clones. The bullfrog isolates were not genetically related to other E. meningoseptica from human and reference isolates. This research provided the first comparisons of biochemical characteristics and genetic differences of E. meningoseptica from human and bullfrog isolates.


Subject(s)
Chryseobacterium , Fish Diseases , Flavobacteriaceae Infections , Humans , Animals , Rana catesbeiana , Taiwan/epidemiology , Flavobacteriaceae Infections/epidemiology , Fish Diseases/epidemiology , Fish Diseases/drug therapy , Chryseobacterium/genetics , Genotype , Electrophoresis, Gel, Pulsed-Field/veterinary , Anti-Bacterial Agents/therapeutic use
13.
Infect Chemother ; 55(2): 278-282, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37272237

ABSTRACT

Stenotrophomonas maltophilia is an opportunistic pathogen, often associated with nosocomial infections. Ten S. maltophilia were isolated from clinical samples during the period January 2021 and June 2022. Eight (80%) patients had cancer as a background disease and 2 patients had coronavirus disease 2019. A fatal outcome was recorded in 4 cases (40% of patients). All the isolates were susceptible to minocycline and levofloxacin. Trimethoprim/sulfamethoxazole and ceftazidime resistance rates were 20% and 40% respectively. Eight different patterns were observed by Pulsed-Field Gel Electrophoresis, only two isolates being clonally identical. The isolation of S. maltophilia in clinical settings requires the implementation of infection prevention measures.

14.
Cells ; 12(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37296650

ABSTRACT

Alt-EJ is an error-prone DNA double-strand break (DSBs) repair pathway coming to the fore when first-line repair pathways, c-NHEJ and HR, are defective or fail. It is thought to benefit from DNA end-resection-a process whereby 3' single-stranded DNA-tails are generated-initiated by the CtIP/MRE11-RAD50-NBS1 (MRN) complex and extended by EXO1 or the BLM/DNA2 complex. The connection between alt-EJ and resection remains incompletely characterized. Alt-EJ depends on the cell cycle phase, is at maximum in G2-phase, substantially reduced in G1-phase and almost undetectable in quiescent, G0-phase cells. The mechanism underpinning this regulation remains uncharacterized. Here, we compare alt-EJ in G1- and G0-phase cells exposed to ionizing radiation (IR) and identify CtIP-dependent resection as the key regulator. Low levels of CtIP in G1-phase cells allow modest resection and alt-EJ, as compared to G2-phase cells. Strikingly, CtIP is undetectable in G0-phase cells owing to APC/C-mediated degradation. The suppression of CtIP degradation with bortezomib or CDH1-depletion rescues CtIP and alt-EJ in G0-phase cells. CtIP activation in G0-phase cells also requires CDK-dependent phosphorylation by any available CDK but is restricted to CDK4/6 at the early stages of the normal cell cycle. We suggest that suppression of mutagenic alt-EJ in G0-phase is a mechanism by which cells of higher eukaryotes maintain genomic stability in a large fraction of non-cycling cells in their organisms.


Subject(s)
DNA Repair , Nuclear Proteins , Phosphorylation , Nuclear Proteins/metabolism , DNA Breaks, Double-Stranded , Cell Cycle Checkpoints
15.
Methods Mol Biol ; 2672: 285-302, 2023.
Article in English | MEDLINE | ID: mdl-37335484

ABSTRACT

Telomeres are essential nucleoprotein structures at the very ends of linear eukaryote chromosomes. They shelter the terminal genome territories against degradation and prevent the natural chromosome ends from being recognized by repair mechanisms as double-strand DNA breaks.There are two basic characteristics of telomeric DNA, its sequence and its length. The telomere sequence is important as a "landing area" for specific telomere-binding proteins, which function as signals and moderate the interactions required for correct telomere function. While the sequence forms the proper "landing surface" of telomeric DNA, its length is similarly important. Too short or exceptionally long telomere DNA cannot perform its function properly. In this chapter, methods for the investigation of these two basic telomere DNA characteristics are described, namely, telomere motif identification and telomere length measurement.


Subject(s)
DNA , Telomere , DNA/genetics , Telomere/genetics , Telomere-Binding Proteins/genetics , DNA Breaks, Double-Stranded
16.
Infect Immun ; 91(7): e0015723, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37255474

ABSTRACT

Yersinia enterocolitica (Ye) is one of the major causes of foodborne zoonosis. The BT4/O:3 bioserotype is most commonly isolated in human infections. Pigs are considered the main reservoir of Ye, and hence, understanding the dynamics of infection by this pathogen at the individual and group levels is crucial. In the present study, an experimental model was validated in Large White pigs infected with a BT4/O:3 strain. This study showed that Ye contamination in pigs may occur via the introduction of the bacteria not only by mouth but also by snout, with a colonization process consisting of three periods corresponding to three contamination statuses of pigs: P1, corresponding to the 24 h following ingestion or inhalation of Ye with the appearance of bacteria in tonsils or in feces; P2, from 2 days postinoculation (dpi), corresponding to expansion of Ye and colonization of the digestive system and extraintestinal organs associated with an IgG serological response; and P3, after 21 dpi, corresponding to regression of colonization with intermittent Ye detection in tonsils and feces. Although the inoculated strain persisted up to 56 dpi in all pigs, genetic variations with the loss of the gene yadA (a gene involved in human infection) and the emergence of two new multilocus variable-number tandem-repeat analysis (MLVA) profiles were observed in 33% of the 30 isolates studied. This experimental infection model of pigs by Ye provides new insights into the colonization steps in pigs in terms of bacterial distribution over time and bacterial genetic stability.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Swine , Animals , Humans , Yersinia enterocolitica/genetics , Virulence , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Genetic Markers , Mouth
17.
Antibiotics (Basel) ; 12(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37107078

ABSTRACT

Yersiniosis is the third most commonly reported foodborne zoonosis in the European Union. Here, we evaluated the prevalence of pathogenic Yersinia enterocolitica among healthy pigs (as a major reservoir) in a slaughterhouse in Bulgaria. A total of 790 tonsils and feces from 601 pigs were examined. Isolation and pathogenicity characterization was carried out by the ISO 10273:2003 protocol and Polymerase Chain Reaction (PCR), detecting the 16S rRNA gene, attachment and invasion locus (ail), Yersinia heat-stable enterotoxin (ystA), and Yersinia adhesion (yadA) genes. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE), and antimicrobial resistance by the standard disk diffusion method. Of all the pigs tested, 6.7% were positive for Y. enterocolitica. All isolates belonged to Y. enterocolitica bioserotype 4/O:3. ail, and ystA genes were detected in all positive strains (n = 43), while the plasmid Yersinia virulence plasmid (pYV) was detected in 41. High homogeneity was observed among the strains, with all strains susceptible to ceftriaxone, amikacin and ciprofloxacin, and resistant to ampicillin. In conclusion, a low prevalence of Y. enterocolitica 4/O:3 was found in healthy pigs slaughtered in Bulgaria, not underestimating possible contamination of pork as a potential risk to consumer health.

18.
Int Microbiol ; 26(4): 1073-1085, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37097488

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP), as one of the most common drug-resistant bacteria threatening human health, is hyper-resistant to multiple antimicrobial drugs and carbapenems, which can be dealt with only limited clinical treatment options. This study described the epidemiological characteristics of CRKP in this tertiary care hospital from 2016 to 2020. Specimen sources included blood, sputum, alveolar lavage fluid, puncture fluid, secretions from a burn wound, and urine. Among the 87 carbapenem-resistant strains, ST11 was the predominant isolate, followed by ST15, ST273, ST340, and ST626. These STs were in broad agreement with the STs defined by pulsed-field gel electrophoresis clustering analysis in discriminating clusters of related strains. Most CRKP isolates contained the blaKPC-2 gene, some isolates carried the blaOXA-1, blaNDM-1, and blaNDM-5 genes, and the isolates carrying carbapenem resistance genes were more resistant to the antimicrobials of ß-lactams, carbapenems, macrolides, and fluoroquinolone. The OmpK35 and OmpK37 genes were detected in all CRKP strains, and the Ompk36 gene was detected in some CRKP strains. All detected OmpK37 had 4 mutant sites, and OmpK36 had 11 mutant sites, while no mutant sites were found in OmpK35. More than half of the CRKP strains contained the OqxA and OqxB efflux pump genes. The virulence genes were most commonly combined with urea-wabG-fimH-entB-ybtS-uge-ycf. Only one CRKP isolate was detected with the K54 podoconjugate serotype. This study elucidated the clinical epidemiological features and molecular typing of CRKP, and grasped the distribution of drug-resistant genotypes, podocyte serotypes, and virulence genes of CRKP, providing some guidance for the subsequent treatment of CRKP infection.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , beta-Lactamases/genetics , Virulence/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Carbapenems/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Hospitals , China/epidemiology , Multilocus Sequence Typing
19.
Vet Microbiol ; 280: 109694, 2023 May.
Article in English | MEDLINE | ID: mdl-36871522

ABSTRACT

Listeria monocytogenes, a foodborne human and veterinary pathogen, is associated with high mortality rates in ruminants. However, no studies have investigated the antimicrobial resistance of L. monocytogenes isolates from clinical ruminant cases. This study aimed to determine the phenotypic and genotypic characteristics of L. monocytogenes isolates from clinical cases of Korean ruminants. We collected 24 L. monocytogenes isolates from aborted bovine fetuses and goats presenting with listeriosis-related symptoms. The isolates were subjected to PCR serogrouping, conventional serotyping, virulence gene detection, and antimicrobial susceptibility testing. Furthermore, pulsed-field gel electrophoresis and multilocus sequence typing were used to classify and compare genetic diversity among the isolates, including human L. monocytogenes isolates. The most prevalent L. monocytogenes serotypes were 4b (Ⅳb), 1/2a (Ⅱa; Ⅱc), and 1/2b (Ⅱb). All isolates harbored the virulence genes; however, llsX-encoding listeriolysin were identified only in serotypes 4b and 1/2b. All isolates, including two found in humans, formed three genetically diverse pulsed-field gel electrophoresis clusters according to serotype, lineage, and sequence type. The most prevalent sequence type was ST1, followed by ST365 and ST91. The isolates from ruminants with listeriosis were resistant to oxacillin and ceftriaxone and showed diverse lineage, serotype (serogroup), and sequence type characteristics. Considering that the atypical sequence types exhibited clinical manifestations and histopathological lesions, further study is needed to elucidate the pathogenicity of genetically diverse ruminant L. monocytogenes isolates. Furthermore, continuous monitoring of antimicrobial resistance is required to prevent the emergence of L. monocytogenes strains resistant to common antimicrobials.


Subject(s)
Cattle Diseases , Goat Diseases , Listeria monocytogenes , Listeriosis , Cattle , Animals , Humans , Listeriosis/epidemiology , Listeriosis/veterinary , Virulence/genetics , Ruminants , Serotyping/veterinary , Goats , Republic of Korea/epidemiology , Food Microbiology , Electrophoresis, Gel, Pulsed-Field/veterinary , Cattle Diseases/epidemiology
20.
BMC Microbiol ; 23(1): 90, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997841

ABSTRACT

BACKGROUND: Escherichia coli is the leading pathogen responsible for urinary tract infection (UTI) and recurrent UTI (RUTI). Few studies have dealt with the characterization of host and bacteria in RUTI caused by E. coli with genetically identical or different strains. This study aimed to investigate the host and bacterial characteristics of E. coli RUTI based on molecular typing. RESULTS: Patients aged 20 years or above who presented with symptoms of UTI in emergency department or outpatient clinics between August 2009 and December 2010 were enrolled. RUTI was defined as patients had 2 or more infections in 6 months or 3 or more in 12 months during the study period. Host factors (including age, gender, anatomical/functional defect, and immune dysfunction) and bacterial factors (including phylogenicity, virulence genes, and antimicrobial resistance) were included for analysis. There were 41 patients (41%) with 91 episodes of E. coli RUTI with highly related PFGE (HRPFGE) pattern (pattern similarity > 85%) and 58 (59%) patients with 137 episodes of E. coli RUTI with different molecular typing (DMT) pattern, respectively. There was a higher prevalence of phylogenetic group B2 and neuA and usp genes in HRPFGE group if the first episode of RUTI caused by HRPFGE E. coli strains and all episodes of RUTI caused by DMT E. coli strains were included for comparison. The uropathogenic E. coli (UPEC) strains in RUTI were more virulent in female gender, age < 20 years, neither anatomical/ functional defect nor immune dysfunction, and phylogenetic group B2. There were correlations among prior antibiotic therapy within 3 months and subsequent antimicrobial resistance in HRPFGE E. coli RUTI. The use of fluoroquinolones was more likely associated with subsequent antimicrobial resistance in most types of antibiotics. CONCLUSIONS: This study demonstrated that the uropathogens in RUTI were more virulent in genetically highly-related E. coli strains. Higher bacterial virulence in young age group (< 20 years) and patients with neither anatomical/functional defect nor immune dysfunction suggests that virulent UPEC strains are needed for the development of RUTI in healthy populations. Prior antibiotic therapy, especially the fluoroquinolones, within 3 months could induce subsequent antimicrobial resistance in genetically highly-related E. coli RUTI.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Female , Escherichia coli Infections/microbiology , Phylogeny , Urinary Tract Infections/microbiology , Anti-Bacterial Agents/pharmacology , Molecular Typing , Bacteria/genetics , Fluoroquinolones , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...