Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Plant Signal Behav ; 19(1): 2370706, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38905329

ABSTRACT

Extracellular ATP (eATP) orchestrates vital processes in plants, akin to its role in animals. P2K1 is a crucial receptor mediating eATP effects. Immunoprecipitation tandem mass spectrometry data highlighted FERONIA's significant interaction with P2K1, driving us to explore its role in eATP signaling. Here, we investigated putative P2K1-interactor, FERONIA, which is a versatile receptor kinase pivotal in growth and stress responses. We employed a FERONIA loss-of-function mutant, fer-4, to dissect its effects on eATP signaling. Interestingly, fer-4 showed distinct calcium responses compared to wild type, while eATP-responsive genes were constitutively upregulated in fer-4. Additionally, fer-4 displayed insensitivity to eATP-regulated root growth and reduced cell wall accumulation. Together, these results uncover a role for FERONIA in regulating eATP signaling. Overall, our study deepens our understanding of eATP signaling, revealing the intricate interplay between P2K1 and FERONIA impacting the interface between growth and defense.


Subject(s)
Arabidopsis Proteins , Plant Roots , Signal Transduction , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Adenosine Triphosphate/metabolism , Gene Expression Regulation, Plant , Phosphotransferases , Protein Serine-Threonine Kinases
2.
Acta Histochem ; 126(4): 152170, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936136

ABSTRACT

We previously reported the presence of P2X3 purinoceptors (P2X3)-expressing subserosal afferent nerve endings consisting of net- and basket-like nerve endings in the rat gastric antrum. These nerve endings may morphologically be vagal mechanoreceptors activated by antral peristalsis. The present study investigated immunoreactivities for vesicular glutamate transporter (VGLUT) 1 and VGLUT2 as well as exocytosis-related proteins, i.e., core components of the SNARE complex (SNAP25, Stx1, and VAMP2) and synaptotagmin-1 (Syt1), in whole-mount preparations of the rat gastric antrum using double immunofluorescence. VGLUT1 immunoreactivity was not detected, whereas VGLUT2 immunoreactivity was observed in P2X3-immunoreactive subserosal nerve endings composed of both net- and basket-like endings. In net-like nerve endings, intense VGLUT2 immunoreactivity was localized in polygonal bulges of reticular nerve fibers and peripheral axon terminals. Furthermore, intense immunoreactivities for SNAP25, Stx1, and VAMP2 were localized in net-like nerve endings. Intense immunoreactivities for VAMP2 and Syt1 were observed in VGLUT2-immunoreactive net-like nerve endings. In basket-like nerve endings, VGLUT2 immunoreactivity was localized in pleomorphic terminal structures and small bulges surrounding the subserosal ganglion, whereas immunoreactivities for SNAP25, Stx1, and VAMP2 were weak in these nerve endings. VGLUT2-immunoreactive basket-like nerve endings were weakly immunoreactive for VAMP2 and Syt1. These results suggest that subserosal afferent nerve endings release glutamate by exocytosis mainly from net-like nerve endings to modulate their mechanoreceptor function.

3.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38814360

ABSTRACT

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Subject(s)
Membrane Microdomains , Neuromuscular Junction , Oxidation-Reduction , Signal Transduction , Synaptic Transmission , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Membrane Microdomains/metabolism , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Mice , Signal Transduction/physiology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Exocytosis/physiology , Exocytosis/drug effects , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Calcium/metabolism
4.
Auton Neurosci ; 252: 103158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422662

ABSTRACT

The present study investigated the localization of the adenosine 5'-diphosphate (ADP)-selective P2Y12 purinoceptors in the rat carotid body using multilabeling immunofluorescence. Punctate immunoreactive products for P2Y12 were distributed in chemoreceptive type I cells immunoreactive to vesicular nucleotide transporter (VNUT) or dopamine beta-hydroxylase, but not in S100B-immunoreactive glial-like type II cells. P2Y12 immunoreactivity was localized in cell clusters containing VNUT-immunoreactive type I cells surrounded by the perinuclear cytoplasm and cytoplasmic processes of type II cells immunoreactive for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, which hydrolyze extracellular nucleotide tri- and/or di-phosphates. In ATP bioluminescence assays using carotid bodies, the degradation of extracellular ATP was attenuated in the presence of the selective NTPDases inhibitor ARL67156, suggesting ATP-degrading activity by NTPDases in the tissue. These results suggest that ATP released from type I cells is degraded into ADP and adenosine 5'-monophosphate by NTPDases expressed in type II cells, and that ADP modulates type I cells via P2Y12 purinoceptors.


Subject(s)
Carotid Body , Rats , Animals , Receptors, Purinergic P2Y12 , Nucleotides , Adenosine Triphosphate/metabolism , Adenosine
5.
Anat Sci Int ; 99(1): 68-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37410337

ABSTRACT

In the carotid body of laboratory rodents, adenosine 5'-triphosphate (ATP)-mediated transmission is regarded as critical for transmission from chemoreceptor type I cells to P2X3 purinoceptor-expressing sensory nerve endings. The present study investigated the distribution of P2X3-immunoreactive sensory nerve endings in the carotid body of the adult male Japanese monkey (Macaca fuscata) using multilabeling immunofluorescence. Immunoreactivity for P2X3 was detected in nerve endings associated with chemoreceptor type I cells immunoreactive for synaptophysin. Spherical or flattened terminal parts of P2X3-immunoreactive nerve endings were in close apposition to the perinuclear cytoplasm of synaptophysin-immunoreactive type I cells. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), which hydrolyzes extracellular ATP, was localized in the cell body and cytoplasmic processes of S100B-immunoreactive cells. NTPDase2-immunoreactive cells surrounded P2X3-immunoreactive terminal parts and synaptophysin-immunoreactive type I cells, but did not intrude into attachment surfaces between terminal parts and type I cells. These results suggest ATP-mediated transmission between type I cells and sensory nerve endings in the carotid body of the Japanese monkey, as well as those of rodents.


Subject(s)
Carotid Body , Rats , Animals , Male , Carotid Body/metabolism , Macaca fuscata/metabolism , Receptors, Purinergic P2X3/metabolism , Synaptophysin/metabolism , Rats, Wistar , Sensory Receptor Cells/metabolism , Adenosine Triphosphate/metabolism
6.
J Histochem Cytochem ; 72(1): 41-60, 2024 01.
Article in English | MEDLINE | ID: mdl-38158780

ABSTRACT

The present study investigated the localization and the adenosine 5'-triphosphate (ATP)-degrading function of the plasma membrane-bound ecto-nucleotidase, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), in the rat adrenal medulla. The effect of ATP degradation product, adenosine 5'-diphosphate (ADP), on carbachol (CCh)-induced intracellular Ca2+ ([Ca2+]i) responses in adrenal chromaffin cells was examined using calcium imaging. NTPDase2-immunoreactive cells were distributed between chromaffin cells. NTPDase2-immunoreactive cells were immunoreactive for glial fibrillary acidic protein and S100B, suggesting that they were sustentacular cells. NTPDase2-immunoreactive cells surrounded chromaffin cells immunoreactive for vesicular nucleotide transporter and P2Y12 ADP-selective purinoceptors. In ATP bioluminescence assays using adrenal medullary slices, ATP was rapidly degraded and its degradation was attenuated by the NTPDase inhibitors sodium polyoxotungstate (POM-1) and 6-N, N-diethyl-d-ß,γ-dibromomethylene ATP (ARL67156). ADP inhibited CCh-induced [Ca2+]i increases of chromaffin cells in adrenal medullary slices. The inhibition of CCh-induced [Ca2+]i increases by ADP was blocked by the P2Y12 purinoceptor antagonist AZD1283. CCh-induced [Ca2+]i increases were also inhibited by the P2Y1, P2Y12, and P2Y13 purinoceptor agonist 2-methylthioadenosine diphosphate trisodium (2MeSADP), in combination with the P2Y1 purinoceptor antagonist MRS2179. These results suggest that sustentacular cells express NTPDase2 to degrade ATP released from adrenal chromaffin cells, and ADP modulates the excitability of chromaffin cells via P2Y12 purinoceptors to regulate catecholamine release during preganglionic sympathetic stimuli. (J Histochem Cytochem 72: 41-60, 2024).


Subject(s)
Adenosine Triphosphatases , Adrenal Medulla , Chromaffin Cells , Animals , Rats , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Adrenal Medulla/metabolism , Calcium/metabolism , Chromaffin Cells/metabolism , Diphosphates/metabolism , Adenosine Triphosphatases/metabolism
7.
J Clin Med ; 12(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37835016

ABSTRACT

BACKGROUND: Impairment of platelet responses to adenosine diphosphate (ADP) is typified by mild to severe bleeding diathesis, easy bruising, excessive mucosal and post-operative bleeding. Patients lack full platelet activation and aggregation in response to ADP. Following research of the literature in Scopus, PubMed/MEDLINE, ScienceDirect, and the Cochrane Library, we report only 18 patients described to date with impaired platelet response to ADP, none of whom in the high bleeding-risk surgical setting or exploring potential therapeutic options. Data regarding population, putative genetic mutations, modes of inheritance, functional defects, and related clinical manifestations were retrieved from case series and case reports. CASE PRESENTATION: A 40-year-old woman was scheduled for on-pump cardiac surgery. Her past medical history included episodes of spontaneous mucocutaneous hemorrhages of the mild entity since childhood. Multiple electrode aggregometry (MEA, Multiplate® Roche Diagnostics, Rotkreuz, Switzerland) was used to evaluate platelet response to thrombin-activated peptide-6 (TRAP), arachidonic acid (ASPI), and ADP. An inadequate platelet aggregation induced using a high concentration of ADP with normal TRAP and ASPI tests was detected preoperatively. Therefore, intravenous desmopressin (DVVAP) 0.3 µg/kg body weight was administered to manage microvascular bleeding developed after weaning from cardiopulmonary bypass (CPB). CONCLUSIONS: Proper management of impaired platelet response to ADP requires a systematic assessment. The Multiplate analyzer is a valuable tool to promptly detect the disorder when a high clinical suspect is present and obtain insights during high bleeding-risk surgical procedures. DVVAP can be beneficial as first-line therapy in bleeding patients to improve platelet function.

8.
FEBS Lett ; 597(16): 2059-2071, 2023 08.
Article in English | MEDLINE | ID: mdl-37465901

ABSTRACT

P2K1 is a plant-specific purinoceptor that perceives extracellular ATP (eATP), a signaling molecular implicated in various physiological processes. Interestingly, P2K1 harbors a C-terminal intrinsically disordered region (IDR). When we overexpressed a truncated P2K1 (P2K1t ) lacking the IDR, primary root growth completely ceased in response to eATP. We investigated the functional roles of the IDR in P2K1 using a combination of molecular genetics, calcium imaging, gene expression analysis, and histochemical approaches. We found that the P2K1t variant gave rise to an amplified response to eATP, through accumulation of superoxide, altered cell wall integrity, and ultimate cell death in the primary root tip. Together, these observations underscore the significant involvement of the C-terminal tail of P2K1 in root growth regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Signal Transduction/genetics , Receptors, Purinergic/metabolism , Adenosine Triphosphate/metabolism
9.
Front Plant Sci ; 14: 1183335, 2023.
Article in English | MEDLINE | ID: mdl-37332691

ABSTRACT

When cells experience acute mechanical distress, they release ATP from their cellular compartment into the surrounding microenvironment. This extracellular ATP (eATP) can then act as a danger signal-signaling cellular damage. In plants, cells adjacent to damage detect rising eATP concentrations through the cell-surface receptor kinase, P2K1. Following eATP perception, P2K1 initiates a signaling cascade mobilizing plant defense. Recent transcriptome analysis revealed a profile of eATP-induced genes sharing pathogen- and wound-response hallmarks-consistent with a working model for eATP as a defense-mobilizing danger signal. To build on the transcriptional footprint and broaden our understanding of dynamic eATP signaling responses in plants, we aimed to i) generate a visual toolkit for eATP-inducible marker genes using a ß-glucuronidase (GUS) reporter system and ii) evaluate the spatiotemporal response of these genes to eATP in plant tissues. Here, we demonstrate that the promoter activities of five genes, ATPR1, ATPR2, TAT3, WRKY46, and CNGC19, were highly sensitive to eATP in the primary root meristem and elongation zones with maximal responses at 2 h after treatment. These results suggest the primary root tip as a hub to study eATP-signaling activity and provide a proof-of-concept toward using these reporters to further dissect eATP and damage signaling in plants.

10.
Purinergic Signal ; 19(1): 185-197, 2023 03.
Article in English | MEDLINE | ID: mdl-35181831

ABSTRACT

Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.


Subject(s)
Endothelial Cells , Hypertension , Humans , Receptors, Purinergic/physiology , Synaptic Transmission , Signal Transduction , Adenosine Triphosphate/physiology
11.
Pflugers Arch ; 474(12): 1285-1294, 2022 12.
Article in English | MEDLINE | ID: mdl-36181534

ABSTRACT

The protein-bound uremic toxin indoxyl sulfate has negative effects on a variety of physiological activities including vascular function. Uridine adenosine tetraphosphate (Up4A), a new dinucleotide molecule affects vascular function including induction of vasocontraction, and aberrant responsiveness to Up4A is evident in arteries from disorders such as hypertension and diabetes. The link between indoxyl sulfate and the Up4A-mediated response is, however, unknown. We used Wistar rat's renal arteries to see if indoxyl sulfate will affect Up4A-mediated vascular contraction. In renal arteries of indoxyl sulfate, the contractile response generated by Up4A was dramatically reduced compared to the non-treated control group. Indoxyl sulfate increased endothelin-1-induced contraction but had no effect on phenylephrine, thromboxane analog, or isotonic K+-induced renal arterial contractions. UTP, ATP, UDP, and ADP-produced contractions were reduced by indoxyl sulfate. CH223191, an aryl hydrocarbon receptor (AhR) antagonist, did not reverse Up4A, and UTP contraction decreases caused by indoxyl sulfate. The ectonucleotidase inhibitor ARL67156 prevents indoxyl sulfate from reducing Up4A- and UTP-mediated contractions. In conclusion, we discovered for the first time that indoxyl sulfate inhibits Up4A-mediated contraction in the renal artery, possibly through activating ectonucleotidase but not AhR. Indoxyl sulfate is thought to play a function in the pathophysiology of purinergic signaling.


Subject(s)
Indican , Renal Artery , Rats , Animals , Indican/pharmacology , Uridine Triphosphate/pharmacology , Rats, Wistar , Adenosine Triphosphate
12.
Tissue Cell ; 79: 101924, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36126416

ABSTRACT

Our previous study reported that a part of small intensely fluorescent (SIF) cells in the rat superior cervical ganglion were innervated by P2X3 purinoceptor-expressing glossopharyngeal sensory nerve endings, suggesting the occurrence of adenosine 5'-triphosphate (ATP)-mediated transmission between them. The present study investigated the immunolocalization of vesicular nucleotide transporter (VNUT) in SIF cells of the superior cervical ganglion in male Wistar rats. VNUT was immunohistochemically localized in tyrosine hydroxylase-immunoreactive SIF cells and sympathetic postganglionic neurons, but not in a few SIF cells with immunoreactivity for dopamine beta-hydroxylase. P2X3-immunoreactive ramified nerve endings formed flat leaf-like or spherical terminal parts to surround some VNUT-immunoreactive SIF cells, but not other VNUT-immunoreactive SIF cells attached to ganglionic neurons. VNUT-immunoreactive SIF cells contained bassoon-immunoreactive products at the contacting surface of P2X3-immunoreactive nerve endings. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2, which hydrolyzes extracellular ATP, was observed in S100B-immunoreactive satellite glial cells surrounding VNUT-immunoreactive SIF cells, but not in the attachment surfaces between SIF cells and nerve endings with P2X3 immunoreactivity. The present results suggest that SIF cells release ATP by exocytosis to modulate the excitability of sensory nerve endings and postganglionic neurons in the superior cervical ganglion.


Subject(s)
Nucleotides , Superior Cervical Ganglion , Rats , Male , Animals , Rats, Wistar , Sensory Receptor Cells , Adenosine Triphosphate
13.
Front Pharmacol ; 13: 935804, 2022.
Article in English | MEDLINE | ID: mdl-35910348

ABSTRACT

Ectopic calcification (EC) of myofibers is a pathological feature of muscle damage in Duchenne muscular dystrophy (DMD). Mineralisation of muscle tissue occurs concomitantly with macrophage infiltration, suggesting a link between ectopic mineral deposition and inflammation. One potential link is the P2X7 purinoceptor, a key trigger of inflammation, which is expressed on macrophages but also up-regulated in dystrophic muscle cells. To investigate the role of P2X7 in dystrophic calcification, we utilised the Dmd mdx-ßgeo dystrophin-null mouse model of DMD crossed with a global P2X7 knockout (P2rx7 -/- ) or with our novel P2X7 knockin-knockout mouse (P2x7 KiKo ), which expresses P2X7 in macrophages but not muscle cells. Total loss of P2X7 increased EC, indicating that P2X7 overexpression is a protective mechanism against dystrophic mineralisation. Given that muscle-specific P2X7 ablation did not affect dystrophic EC, this underlined the role of P2X7 receptor expression on the inflammatory cells. Serum phosphate reflected dystrophic calcification, with the highest serum phosphate levels found in genotypes with the most ectopic mineral. To further investigate the underlying mechanisms, we measured phosphate release from cells in vitro, and found that dystrophic myoblasts released less phosphate than non-dystrophic cells. Treatment with P2X7 antagonists increased phosphate release from both dystrophic and control myoblasts indicating that muscle cells are a potential source of secreted phosphate while macrophages protect against ectopic mineralisation. Treatment of cells with high phosphate media engendered mineral deposition, which was decreased in the presence of the P2X7 agonist BzATP, particularly in cultures of dystrophic cells, further supporting a protective role for P2X7 against ectopic mineralisation in dystrophic muscle.

14.
Front Cell Neurosci ; 16: 910662, 2022.
Article in English | MEDLINE | ID: mdl-35875355

ABSTRACT

Objective: ATP-gated ionotropic P2X7 receptors (P2X7R) actively participate in epilepsy and other neurological disorders. Neocortical nerve terminals of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) express higher P2X7R amounts. Overexpression of P2X7R bolsters ATP signals during seizures resulting in glial cell activation, cytokines production, and GABAergic rundown with unrestrained glutamatergic excitation. In a mouse model of status epilepticus, increased expression of P2X7R has been associated with the down-modulation of the non-coding micro RNA, miR-22. MiR levels are stable in biological fluids and normally reflect remote tissue production making them ideal disease biomarkers. Here, we compared P2X7R and miR-22 expression in epileptic brains and in the serum of patients with MTLE-HS, respectively. Methods: Quantitative RT-PCR was used to evaluate the expression of P2X7R in the hippocampus and anterior temporal lobe of 23 patients with MTLE-HS and 10 cadaveric controls. Confocal microscopy and Western blot analysis were performed to assess P2X7R protein amounts. MiR-22 expression was evaluated in cell-free sera of 40 MTLE-HS patients and 48 healthy controls. Results: Nerve terminals of the hippocampus and neocortical temporal lobe of MTLE-HS patients overexpress (p < 0.05) an 85 kDa P2X7R protein whereas the normally occurring 67 kDa receptor protein dominates in the brain of the cadaveric controls. Contrariwise, miR-22 serum levels are diminished (p < 0.001) in MTLE-HS patients compared to age-matched control blood donors, a situation that is more evident in patients requiring multiple (>3) anti-epileptic drug (AED) regimens. Conclusion: Data show that there is an inverse relationship between miR-22 serum levels and P2X7R expression in the hippocampus and neocortex of MTLE-HS patients, which implies that measuring serum miR-22 may be a clinical surrogate of P2X7R brain expression in the MTLE-HS. Moreover, the high area under the ROC curve (0.777; 95% CI 0.629-0.925; p = 0.001) suggests that low miR-22 serum levels may be a sensitive predictor of poor response to AEDs among MTLE-HS patients. Results also anticipate that targeting the miR-22/P2X7R axis may be a good strategy to develop newer AEDs.

15.
Front Endocrinol (Lausanne) ; 13: 867011, 2022.
Article in English | MEDLINE | ID: mdl-35480481

ABSTRACT

Adenosine triphosphate (ATP) serves as the essential source of cellular energy. Over the last two decades, however, ATP has also attracted increasing interest as an extracellular signal that activates purinergic plasma membrane receptors of the P2 family. P2 receptors are divided into two types: ATP-gated nonselective cation channels (P2X) and G protein-coupled receptors (P2Y), the latter being activated by a broad range of purine and pyrimidine nucleotides (ATP, ADP, UTP, and UDP, among others). Purinergic signaling mechanisms are involved in numerous physiological events and pathophysiological conditions. Here, we address the growing body of evidence implicating purinergic signaling in male reproductive system functions. The life-long generation of fertile male germ cells is a highly complex, yet mechanistically poorly understood process. Given the relatively sparse innervation of the testis, spermatogenesis relies on both endocrine control and multi-directional paracrine communication. Therefore, a detailed understanding of such paracrine messengers, including ATP, is crucial to gain mechanistic insight into male reproduction.⁠.


Subject(s)
Receptors, Purinergic , Spermatogenesis , Adenosine Triphosphate/metabolism , Endocrine System/metabolism , Humans , Male , Receptors, Purinergic/metabolism , Signal Transduction
16.
Comput Struct Biotechnol J ; 20: 1198-1207, 2022.
Article in English | MEDLINE | ID: mdl-35317226

ABSTRACT

The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic-pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.

17.
J Anat ; 240(4): 688-699, 2022 04.
Article in English | MEDLINE | ID: mdl-34719779

ABSTRACT

The present study investigated the cellular components and afferent innervations of taste buds in the rat incisive papilla by immunohistochemistry using confocal scanning laser microscopy. Taste buds containing guanine nucleotide-binding protein G(t), subunit α3 (GNAT3)-imunoreactive cells were densely distributed in the lateral wall of incisive papilla forming the opening of nasoincisor ducts. GNAT3-immunoreactive cells in the taste buds were slender in shape and the tips of apical processes gathered at one point at the surface of the epithelium. The number of taste buds was 56.8 ± 4.5 in the incisive papilla. The incisive taste buds also contained ectonucleoside triphosphate diphosphohydrolase 2-immunoreactive cells and synaptotagmin-1-immunoreactive cells in addition to GNAT3-immunoreactive cells. Furthermore, GNAT3-immunoreactive cells were immunoreactive to taste transduction molecules such as phospholipase C, ß2-subunit, and inositol 1,4,5-trisphosphate receptor, type 3. P2X3-immunoreactive subepithelial nerve fibers intruded into the taste buds and terminated with hederiform or calix-like nerve endings attached to GNAT3-immunoreactive cells and synaptosomal-associated protein, 25 kDa-immunoreactive cells. Some P2X3-immunoreactive endings were also weakly immunoreactive for P2X2. Furthermore, a retrograde tracing method using fast blue dye indicated that most of the P2X3-immunoreactive nerve endings originated from the geniculate ganglia (GG) of the facial nerve. These results suggest that incisive taste buds are morphologically and cellularly homologous to lingual taste buds and are innervated by P2X3-immunoreactive nerve endings derived from the GG. The incisive papilla may be the palatal taste papilla that transmits chemosensory information in the oral cavity to the GG via P2X3-immunoreactive afferent nerve endings.


Subject(s)
Taste Buds , Animals , Microscopy, Confocal , Nerve Endings , Palate , Rats , Sensory Receptor Cells
18.
J Neurosci ; 41(48): 9860-9871, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34697094

ABSTRACT

In mammalian taste buds, Type I cells comprise half of all cells. These are termed "glial-like" based on morphologic and molecular features, but there are limited studies describing their function. We tested whether Type I cells sense chemosensory activation of adjacent chemosensory (i.e., Types II and III) taste bud cells, similar to synaptic glia. Using Gad2;;GCaMP3 mice of both sexes, we confirmed by immunostaining that, within taste buds, GCaMP expression is predominantly in Type I cells (with no Type II and ≈28% Type III cells expressing weakly). In dissociated taste buds, GCaMP+ Type I cells responded to bath-applied ATP (10-100 µm) but not to 5-HT (transmitters released by Type II or III cells, respectively). Type I cells also did not respond to taste stimuli (5 µm cycloheximide, 1 mm denatonium). In lingual slice preparations also, Type I cells responded to bath-applied ATP (10-100 µm). However, when taste buds in the slice were stimulated with bitter tastants (cycloheximide, denatonium, quinine), Type I cells responded robustly. Taste-evoked responses of Type I cells in the slice preparation were significantly reduced by desensitizing purinoceptors or by purinoceptor antagonists (suramin, PPADS), and were essentially eliminated by blocking synaptic ATP release (carbenoxolone) or degrading extracellular ATP (apyrase). Thus, taste-evoked release of afferent ATP from type II chemosensory cells, in addition to exciting gustatory afferent fibers, also activates glial-like Type I taste cells. We speculate that Type I cells sense chemosensory activation and that they participate in synaptic signaling, similarly to glial cells at CNS tripartite synapses.SIGNIFICANCE STATEMENT Most studies of taste buds view the chemosensitive excitable cells that express taste receptors as the sole mediators of taste detection and transmission to the CNS. Type I "glial-like" cells, with their ensheathing morphology, are mostly viewed as responsible for clearing neurotransmitters and as the "glue" holding the taste bud together. In the present study, we demonstrate that, when intact taste buds respond to their natural stimuli, Type I cells sense the activation of the chemosensory cells by detecting the afferent transmitter. Because Type I cells synthesize GABA, a known gliotransmitter, and cognate receptors are present on both presynaptic and postsynaptic elements, Type I cells may participate in GABAergic synaptic transmission in the manner of astrocytes at tripartite synapses.


Subject(s)
Synaptic Transmission/physiology , Taste Buds/cytology , Taste Buds/physiology , Animals , Female , Mice , Synapses , Taste/physiology
19.
J Comp Neurol ; 529(18): 3866-3881, 2021 12.
Article in English | MEDLINE | ID: mdl-34297862

ABSTRACT

We previously reported P2X3 purinoceptor (P2X3)-expressing vagal afferent nerve endings with large web-like structures in the subserosal tissue of the antral lesser curvature, suggesting that these nerve endings were one of the vagal mechanoreceptors. The present study investigated the morphological relationship between P2X3-immunoreactive nerve endings and serosal ganglia in the rat gastric antrum by immunohistochemistry of whole-mount preparations using confocal scanning laser microscopy. P2X3-immunoreactive basket-like subserosal nerve endings with new morphology were distributed laterally to the gastric sling muscles in the distal antrum of the lesser curvature. Parent axons ramified into numerous nerve fibers with pleomorphic flattened structures to form basket-like nerve endings, and the parent axons were originated from large net-like structures of vagal afferent nerve endings. Basket-like nerve endings wrapped around the whole serosal ganglia, which were characterized by neurofilament 200 kDa-immunoreactive neurons with or without neuronal nitric oxide synthase immunoreactivity and S100B-immunoreactive glial cells. Furthermore, basket-like nerve endings were localized in close apposition to dopamine beta-hydroxylase-immunoreactive sympathetic nerve fibers immunoreactive for vesicular nucleotide transporter. These results suggest that P2X3-immunoreactive basket-like nerve endings associated with serosal ganglia are the specialized ending structures of vagal subserosal mechanoreceptors in order to increase the sensitivity during antral peristalsis, and are activated by ATP from sympathetic nerve fibers and/or serosal ganglia for the regulation of mechanoreceptor function.


Subject(s)
Ganglia , Nerve Endings , Neurons, Afferent , Nucleotide Transport Proteins , Pyloric Antrum/innervation , Serous Membrane , Animals , Immunohistochemistry , Male , Mechanoreceptors , Microscopy, Confocal , Nerve Fibers , Rats , Rats, Wistar , Stomach/innervation
20.
Mol Biol Rep ; 48(7): 5513-5518, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34302584

ABSTRACT

Pyridoxine (PN), one of the vitamers of vitamin B6, plays an important role in the maintenance of epidermal function and is used to treat acne and rough skin. Clinical studies have revealed that PN deficiency causes skin problems such as seborrheic dermatitis and stomatitis. However, the detailed effects of PN and its mechanism of action in epidermal function are poorly understood. In this study, we examined the effects of PN on epidermal function in normal human epidermal keratinocytes and found that PN specifically causes an increase in the expression of profilaggrin mRNA, among marker genes of terminal epidermal differentiation. In addition, PN treatment caused an increase in the production of filaggrin protein in a concentration-dependent manner. Treatment with P2x purinoceptor antagonists, namely, pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid) tetrasodium salt hydrate and TNP-ATP hydrate, induced an increase in the filaggrin protein levels. Moreover, we showed that elevated filaggrin production induced upon PN treatment was suppressed by ATP (known as P2x purinoceptor agonist). This study is the first to report that PN causes an increase in filaggrin transcription and production, and these results suggest that PN-induced filaggrin production may be a useful target as a daily care component in atopic dermatitis, wherein filaggrin levels are specifically reduced.


Subject(s)
Intermediate Filament Proteins/genetics , Keratinocytes/metabolism , Pyridoxine/metabolism , Cells, Cultured , Epidermis/metabolism , Filaggrin Proteins , Gene Expression Regulation , Humans , Pyridoxine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...