Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Adv Exp Med Biol ; 1441: 77-85, 2024.
Article in English | MEDLINE | ID: mdl-38884705

ABSTRACT

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).


Subject(s)
Disease Models, Animal , Heart Defects, Congenital , Heart , Animals , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/pathology , Heart/embryology , Heart/physiopathology , Heart/growth & development , Humans , Mice , Morphogenesis
2.
Heart Rhythm ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38490601

ABSTRACT

BACKGROUND: Left bundle branch block (LBBB) represents a frequently encountered conduction system disorder. Despite its widespread occurrence, a continual dilemma persists regarding its intricate association with underlying cardiomyopathy and its pivotal role in the initiation of dilated cardiomyopathy. The pathologic alterations linked to LBBB-induced cardiomyopathy (LBBB-CM) have remained elusive. OBJECTIVE: This study sought to investigate the chronologic dynamics of LBBB to left ventricular dysfunction and the pathologic mechanism of LBBB-CM. METHODS: LBBB model was established through main left bundle branch trunk ablation in 14 canines. All LBBB dogs underwent transesophageal echocardiography and electrocardiography before ablation and at 1 month, 3 months, 6 months, and 12 months after LBBB induction. Single-photon emission computed tomography imaging was performed at 12 months. We then harvested the heart from all LBBB dogs and 14 healthy adult dogs as normal controls for anatomic observation, Purkinje fiber staining, histologic staining, and connexin43 protein expression quantitation. RESULTS: LBBB induction caused significant fibrotic changes in the endocardium and mid-myocardium. Purkinje fibers exhibited fatty degeneration, vacuolization, and fibrosis along with downregulated connexin43 protein expression. During a 12-month follow-up, left ventricular dysfunction progressively worsened, peaking at the end of the observation period. The association between myocardial dysfunction, hypoperfusion, and fibrosis was observed in the LBBB-afflicted canines. CONCLUSION: LBBB may lead to profound myocardial injury beyond its conduction impairment effects. The temporal progression of left ventricular dysfunction and the pathologic alterations observed shed light on the complex relationship between LBBB and cardiomyopathy. These findings offer insights into potential mechanisms and clinical implications of LBBB-CM.

3.
Pacing Clin Electrophysiol ; 47(1): 5-18, 2024 01.
Article in English | MEDLINE | ID: mdl-38112039

ABSTRACT

BACKGROUND: Precise mapping of the Purkinje fiber network is essential in catheter ablation of Purkinje-related ventricular arrhythmias (PrVAs). We sought to evaluate the mapping ability of a multi-spline duodecapolar catheter (PentaRay) for PrVAs. METHODS: Mappings of Purkinje fibers by PentaRay catheters were compared with those by conventional mapping catheters in consecutive patients undergoing catheter ablation of PrVAs from 2015 to 2022. RESULTS: Sixteen PrVAs (7 premature ventricular contractions or non-reentrant fascicular tachycardias [PVCs/NRFTs] and 9 fascicular ventricular tachycardias [FVTs]) were retrospectively studied. In PVCs/NRFTs, earliest preceding Purkinje potentials (PPs) could be recorded by the PentaRay catheters but not by the mapping and ablation catheters in 5 cases. At the earliest PP sites, the precedence from the QRS onset was greater, and the amplitude of the preceding potentials was higher in the PentaRay catheter compared with those in the mapping and ablation catheter (-62.0 ± 42.8 vs. -29.4 ± 34.2 ms, P = 0.02; 0.45 ± 0.43 vs. 0.09 ± 0.08 mV, P = 0.02). In FVTs, late diastolic potentials (P1) were recorded by the PentaRay catheters but not by the mapping and ablation catheters or the linear duodecapolar catheter in 2 cases. The amplitude of P1 was higher in the PentaRay catheter compared with that in the linear duodecapolar catheter and the mapping and ablation catheters (0.72 ± 0.49 vs. 0.17 ± 0.18 vs. 0.27 ± 0.21 mV, P = 0.0006, P = 0.002). The localized critical PPs, defined as the earliest preceding potentials in PVCs/NRFTs and P1 in FVTs, could be recorded in all the patients by the PentaRay catheter. The mapping ability of critical PPs of PrVAs was better with the PentaRay catheter than with the conventional mapping catheters (16/16 vs. 9/16, P = 0.004 by McNemar exact test). CONCLUSIONS: The PentaRay catheter has clinical advantages in mapping of the Purkinje fiber network to reveal critical PPs as ablation targets of PrVAs.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Ventricular Premature Complexes , Humans , Retrospective Studies , Treatment Outcome , Tachycardia, Ventricular/surgery , Electrodes , Ventricular Premature Complexes/surgery , Catheters
4.
JACC Clin Electrophysiol ; 9(12): 2477-2490, 2023 12.
Article in English | MEDLINE | ID: mdl-37831033

ABSTRACT

BACKGROUND: Multifocal ectopic Purkinje-related premature contractions (MEPPCs) are associated with SCN5A variants. However, it is not well understood why Purkinje fibers, but not ventricular myocardium, play a predominant role in arrhythmogenesis. OBJECTIVES: This study sought to explore the underlying mechanisms of MEPPC. METHODS: Whole-cell patch-clamp and molecular biology techniques were used in the present study. RESULTS: Clinical data from one patient with R814W variant showed MEPPC syndrome, which is well responsive to amiodarone. Compared with canine ventricular myocytes, Purkinje cells (PCs) had significantly larger sodium current (INa), leftward shift of INa activation and inactivation curves, suggesting higher sodium channel excitability in PCs. Real-time polymerase chain reaction and Western blot analysis showed that the mRNA and protein expression of NaVß1 and NaVß3 was higher in canine Purkinje fibers than in ventricular myocardium. INa in heterologous Chinese hamster ovary cell expression system co-expressing NaV1.5 and NaVß1/NaVß3 exhibited similar biophysical properties of INa in PCs. R814W variant shifted INa activation in a hyperdepolarized direction, caused a larger window current, and generated an outward-gating pore current at depolarized voltages. Coexpression of NaVß1/NaVß3 with Nav1.5-R814W further left-shifted INa activation and caused an even larger window current and gating pore current, suggesting higher susceptibility of Purkinje fibers to R814W variant. Amiodarone inhibited INa, shifted its inactivation to more negative voltages, and significantly decreased the window current. CONCLUSIONS: A higher expression of ß1 and ß3 subunits contributes to higher sodium channel excitability in cardiac Purkinje fibers, making them more susceptible to MEPPC.


Subject(s)
Amiodarone , Purkinje Fibers , Cricetinae , Humans , Animals , Dogs , CHO Cells , Cricetulus , Arrhythmias, Cardiac/metabolism
5.
Int. j. morphol ; 41(4): 1058-1065, ago. 2023. ilus
Article in English | LILACS | ID: biblio-1514349

ABSTRACT

SUMMARY: The existence of "transitional muscular structures" between subendocardial branches (Purkinje fibers) and ventricular working muscle fibers (WF) was first described by the German anatomist, Kurt Goerttler, in 1964. He designated them as "subendocardial nucleus organs." He supposed such fibers functioned as mechanoreceptors, controlling of the intensity of contraction of the ventricular musculature. Brazilian anatomist Ferraz de Carvalho described similar structures in 1993. A thorough literature search failed to identify any other research articles confirming or denying their existence. The objective of this work was to find such structures in subendocardial ventricular walls in human hearts. We collected fifteen formalin-preserved hearts from the Anatomy Department of São Paulo University and sectioned the apical portions on the right and left ventricles according to method used by Goerttler. We utilized conventional histology (light microscopy- LM), scanning electron microscopy (SEM), and a new preservation method called micro- plastination (MP). At the anterior wall of the right ventricle in the subendocardial region between the interventricular septum and moderator band, we found several bundles of fusiform and helicoidal fibers of similar histology to the WF. The bundles measured between 400 and 1150 µm in length and were separated from adjacent muscular fibers by thin collagen fiber, thus acting as a "pseudo capsule." Some structures seemed to be linked to PF and were appeared to be lymphatic and blood vessels and nerves. We called those structures "cardiac corpuscles" (CC). The observation of the previously "unknown" CC in this initial study confirmed the previous descriptions and its discovery may contribute to new perspectives in the study of cardiac muscle structure and function.


La existencia de "estructuras musculares de transición" entre los ramos subendocárdicos (fibras de Purkinje) y las fibras musculares ventriculares activas(FMV) fue descrita por primera vez por el anatomista alemán Kurt Goerttler en 1964, quien las denominó "órganos del núcleo subendocárdico". Supuso que tales fibras funcionaban como mecanoreceptores, controlando la intensidad de la contracción de la musculatura ventricular. El anatomista brasileño Ferraz de Carvalho describió estructuras similares en 1993. Una búsqueda bibliográfica exhaustiva no logró identificar ningún otro artículo de investigación que confirmara o negara su existencia. El objetivo de este trabajo fue encontrar dichas estructuras en las paredes ventriculares subendocárdicas de corazones humanos. Recolectamos 15 corazones conservados en formalina del Departamento de Anatomía de la Universidad de São Paulo y seccionamos las porciones apicales de los ventrículos derecho e izquierdo según el método utilizado por Goerttler. Utilizamos histología convencional (microscopía de luz-LM), microscopía electrónica de barrido (SEM) y un nuevo método de conservación llamado microplastinación (MP). En la pared anterior del ventrículo derecho en la región subendocárdica entre el tabique interventricular y la banda moderadora, encontramos varios haces de fibras fusiformes y helicoidales de histología similar a la FMV. Los haces medían entre 400 y 1150 µm de longitud y estaban separados de las fibras musculares adyacentes por una fina fibra de colágeno, actuando así como una "pseudocápsula". Algunas estructuras parecían estar vinculadas a la fibras de purkinje y parecían ser vasos linfáticos, sanguíneos y nerviosos. Llamamos a esas estructuras "corpúsculos cardíacos" (CC). La observación del CC previamente "desconocido" en este estudio inicial confirmó las descripciones anteriores y su descubrimiento puede contribuir a nuevas perspectivas en el estudio de la estructura y función del músculo cardíaco.


Subject(s)
Humans , Purkinje Fibers/anatomy & histology , Heart/anatomy & histology , Heart Ventricles/anatomy & histology , Microscopy, Electron, Scanning
7.
Cardiol Clin ; 41(3): 277-292, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321681

ABSTRACT

The cardiac conduction system is formed of histologically and electrophysiologically distinct specialized tissues uniquely located in the human heart. Understanding the anatomy and pathology of the cardiac conduction system is imperative to an interventional electrophysiologist to perform safe ablation and device therapy for the management of cardiac arrhythmias and heart failure. The current review summarizes the normal and developmental anatomy of the cardiac conduction system, its variation in the normal heart and congenital anomalies, and its pathology and discusses important clinical pearls for the proceduralist.


Subject(s)
Atrioventricular Node , Heart Failure , Humans , Bundle of His , Heart Conduction System
8.
J Cardiovasc Dev Dis ; 10(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37103038

ABSTRACT

The moderator band (MB) is an intracavitary structure of the right ventricle composed of muscular fibers encompassing specialized Purkinje fibers, separated each other by collagen and adipose tissue. In the last decades, premature ventricular complexes originating within the Purkinje network have been implicated in the genesis of life-threatening arrhythmias. However, right Purkinje network arrhythmias have been much less reported in the literature compared to the left counterpart. The MB has unique anatomical and electrophysiological properties, which may account for its arrhythmogenicity and may be responsible for a significant portion of idiopathic ventricular fibrillation. MB embodies autonomic nervous system cells, with important implications in arrhythmogenesis. Some idiopathic ventricular arrhythmias, defined as the absence of any identifiable structural heart disorder, can begin from this site. Due to these complex structural and functional peculiarities strictly interplayed each other, it is arduous to determine the precise mechanism underlying MB arrhythmias. MB-related arrhythmias should be differentiated from other right Purkinje fibers arrhythmias because of the opportunity for intervention and the unusual site for the ablation poorly described in the literature. In the current paper, we report the characteristics and electrical properties of the MB, their involvement in arrhythmogenesis, clinical and electrophysiological peculiarities of MB-related arrhythmias, and current treatment options.

9.
J Vet Med Sci ; 85(3): 334-339, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36725029

ABSTRACT

Previous studies on dolphin electrocardiograms have shown that they are mainly composed of increased negative waves, similar to ungulates. The electrocardiogram waveform was determined by the distribution of the Purkinje fibers. Based on the waveform of the dolphin electrocardiogram, Hamlin predicted that the Purkinje fibers would be distributed within the ventricular muscle, as in ungulates. The purpose of this study was to confirm the histological distribution of Purkinje fibers in dolphins. In the present study, bottlenose dolphin hearts were observed both grossly and histologically, and the effects of Purkinje fiber distribution and cardiac morphology on electrocardiogram waveforms were examined. This study showed that the Purkinje fibers of dolphins run just below the endocardium, as in humans, dogs, and cats, whose electrocardiograms mainly show positive waves. When the cardiac morphology of dolphins was observed carefully, the right ventricle was found to be extremely dilated compared to that of terrestrial mammals. In human recreational divers, right ventricular dilatation is induced by diving. We hypothesized that the dolphin's heart is in a state similar to that of the right heart dilatation in terrestrial animals. The dolphin electrocardiogram waveform was considered to be due to right axis deviation. Based on the above, we concluded that the dolphin electrocardiogram waveform was due to its ability to live in water. We found that the dolphins are genetically related to ungulates, particularly the hippopotamus, but that their hearts have evolved differently.


Subject(s)
Bottle-Nosed Dolphin , Animals , Humans , Dogs , Bottle-Nosed Dolphin/physiology , Thorax , Mammals , Electrocardiography , Heart Ventricles
10.
Article in English | MEDLINE | ID: mdl-36598715

ABSTRACT

Ventricular fibrillation (VF) is a life-threatening arrhythmia and a common cause of sudden cardiac death (SCD). A basic understanding of its mechanistic underpinning is crucial for enhancing our knowledge to develop innovative mapping and ablation techniques for this lethal rhythm. Significant advances in our understanding of VF have been made especially in the basic science and pre-clinical experimental realms. However, these studies have not yet translated into a robust clinical approach to identify and successfully ablate both the structural and functional substrate of VF. In this review, we aim to (1) provide a conceptual framework of VF and an overview of the data supporting the spatiotemporal dynamics of VF, (2) review experimental approaches to mapping VF to elucidate drivers and substrate for maintenance with a focus on the His-Purkinje system, (3) discuss current approaches using catheter ablation to treat VF, and (4) highlight current unknowns and gaps in the field where future work is necessary to transform the clinical landscape.

11.
J Cardiovasc Electrophysiol ; 34(3): 673-681, 2023 03.
Article in English | MEDLINE | ID: mdl-36651353

ABSTRACT

INTRODUCTION: The anatomical substrate for idiopathic left ventricular tachycardia (ILVT) remains speculative. Purkinje networks surrounding false tendons (FTs) might be involved in the reentrant circuit of ILVT. The objective was to evaluate the anatomical and electrophysiological features of false tendons FTs in relation to ILVT. METHODS: Intracardiac echocardiography (ICE) was conducted on patients with ILVT. The relationship of the FTs with ILVT was determined using electro-anatomical mapping. RESULTS: Electrophysiological evaluation and radiofrequency ablation were conducted in 23 consecutive patients with ILVT. FTs were identified in 19/23 cases (82.6%) with P1 potentials during VT recorded at the FT in 14 of these patients (73.7%). Three FT types were identified. In type 1, the FT attached the septum to the base of the posteromedial papillary muscle (PPM) (4/19); type 2 FTs ran between the septum and the PPM apex (3/19), while in type 3, the connection occurred between the septum and apex (11/19) or between the septum and the LV free wall (1/19). The effective ILVT ablation sites were situated at the FT-PPM (3/19) and the FT-septum (16/19) attachment sites. CONCLUSIONS: This series demonstrates the association between Purkinje fibers and FTs during catheter ablation of ILVT and verifies that left ventricular FTs are an important substrate in this type of tachycardia.


Subject(s)
Catheter Ablation , Heart Defects, Congenital , Tachycardia, Ventricular , Humans , Electrocardiography , Purkinje Fibers , Heart Ventricles
12.
Acta Histochem ; 125(1): 151993, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36584538

ABSTRACT

Heart failure poses a big health problem and may result from obesity, smoking, alcohol and/or growing age. Studying pathological heart tissue demands accurate histological and immunohistochemical stainings in animal models, including chromogenic and fluorescent approaches. Moreover, a reliable set of healthy heart stainings and labeling are required, in order to provide a reference for the pathological situation. Heart and brain tissue of a healthy rabbit were collected, and different histological key steps were compared, such as paraffin embedding after formalin fixation versus cryopreservation; an antigen retrieval (AR) step in processing paraffin sections versus the same procedure without AR; or a chromogenic with a fluorescent detection system, respectively. Using serial sections, we stained the same morphological structure with classic approaches (HE, Masson Goldner Trichrome (GT) and Elastica van Gieson (EL)) and with different markers, including collagen I, collagen III, fibronectin, α-SMA, protease-activated receptor-2 (PAR-2) which is an inflammation-related marker, and ki67 for proliferating cells. Differences between conditions were quantitatively assessed by measuring the color intensity. Generally, cryosections exhibited a more prominent signal intensity in immunohistochemically labeled sections than in paraffin sections, but the strong staining was slurry, which sometimes impeded proper identification of morphological structures, particularly at higher magnifications. In addition, the advantage of an AR step was observed when compared to the condition without AR, where signal intensities were significantly lower. Different stainings of the heart arteries and the myocardium revealed a clear distribution of extracellular matrix components, with prominent collagen III in the artery wall, but an absence of collagen III in the myocardium. Moreover, paraffin-embedded sections provided more distinct structures compared to cryosections after collagen III, ki67, fibronectin, and α-SMA labeling. As for the Purkinje cells that were depicted in the heart and the cerebellum (Purkinje neurons), we found GT staining most suitable to depict them in the heart, while HE as well as EL staining was ideal to depict Purkinje neurons in the cerebellum. In sum, we provide useful reference images with different stainings for researchers using the rabbit heart or brain model. Such images can help to decide which of the immunohistochemical protocols are valuable to reach a specific aim. Recommendations are given for the best visualization of the target structures and specific (immunohistochemical) staining.


Subject(s)
Fibronectins , Paraffin , Animals , Rabbits , Immunohistochemistry , Ki-67 Antigen , Collagen , Paraffin Embedding/methods
13.
Int J Morphol, v. 41, n. 4, p. 1058-1065, mai. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5080

ABSTRACT

he existence of “transitional muscular structures” between subendocardial branches (Purkinje fibers) and ventricular working muscle fibers (WF) was first described by the German anatomist, Kurt Goerttler, in 1964. He designated them as “subendocardial nucleus organs.” He supposed such fibers functioned as mechanoreceptors, controlling of the intensity of contraction of the ventricular musculature. Brazilian anatomist Ferraz de Carvalho described similar structures in 1993. A thorough literature search failed to identify any other research articles confirming or denying their existence. The objective of this work was to find such structures in subendocardial ventricular walls in human hearts. We collected fifteen formalin-preserved hearts from the Anatomy Department of São Paulo University and sectioned the apical portions on the right and left ventricles according to method used by Goerttler. We utilized conventional histology (light microscopy- LM), scanning electron microscopy (SEM), and a new preservation method called micro- plastination (MP). At the anterior wall of the right ventricle in the subendocardial region between the interventricular septum and moderator band, we found several bundles of fusiform and helicoidal fibers of similar histology to the WF. The bundles measured between 400 and 1150 µm in length and were separated from adjacent muscular fibers by thin collagen fiber, thus acting as a “pseudo capsule.” Some structures seemed to be linked to PF and were appeared to be lymphatic and blood vessels and nerves. We called those structures “cardiac corpuscles” (CC). The observation of the previously “unknown” CC in this initial study confirmed the previous descriptions and its discovery may contribute to new perspectives in the study of cardiac muscle structure and function.

14.
Card Electrophysiol Clin ; 14(4): 729-742, 2022 12.
Article in English | MEDLINE | ID: mdl-36396189

ABSTRACT

Ventricular fibrillation (VF) is a common cause of sudden cardiac death (SCD) and is unfortunately without a cure. Current therapies focus on prevention of SCD, such as implantable cardioverter-defibrillator (ICD) implantation and anti-arrhythmic agents. Significant progress has been made in improving our understanding and ability to target the triggers of VF, via advanced mapping and ablation techniques, as well as with autonomic modulation. However, the critical substrate for VF maintenance remains incompletely defined. In this review, we discuss the evidence behind the basic mechanisms of VF and review the current role of catheter ablation in patients with VF.


Subject(s)
Catheter Ablation , Ventricular Fibrillation , Humans , Catheter Ablation/methods , Death, Sudden, Cardiac/prevention & control , Anti-Arrhythmia Agents
16.
Pacing Clin Electrophysiol ; 45(6): 742-751, 2022 06.
Article in English | MEDLINE | ID: mdl-35067947

ABSTRACT

BACKGROUND: The role of the Purkinje network in triggering ventricular fibrillation (VF) has been studied; however, its involvement after onset and in early maintenance of VF is controversial. AIM: We studied the role of the Purkinje-muscle junctions (PMJ) on epicardial-endocardial activation gradients during early VF. METHODS: In a healthy, porcine, beating-heart Langendorff model [control, n = 5; ablation, n = 5], simultaneous epicardial-endocardial dominant frequent mapping was used (224 unipolar electrograms) to calculate activation rate gradients during the onset and early phase of VF. Selective Purkinje ablation was performed using Lugol's solution, followed by VF re-induction and mapping and finally, histological evaluation. RESULTS: Epicardial activation rates were faster than endocardial rates for both onset and early VF. After PMJ ablation, activation rates decreased epicardially and endocardially for both onset and early VF [Epi: 9.7 ± 0.2 to 8.3 ± 0.2 Hz (p <.0001) and 10.9 ± 0.4 to 8.8 ± 0.3 Hz (p < .0001), respectively; Endo: 8.2 ± 0.3 Hz to 7.4 ± 0.2 Hz (p < .0001) and 7.0 ± 0.4 Hz to 6.6 ± 0.3 Hz (p = .0002), respectively]. In controls, epicardial-endocardial activation rate gradients during onset and early VF were 1.7 ± 0.3 Hz and 4.5 ± 0.4 Hz (p < .001), respectively. After endocardial ablation of PMJs, these gradients were reduced to 0.9 ± 0.3 Hz (onset VF, p < .001) and to 2.2 ± 0.3 Hz (early VF, p <.001). Endocardial-epicardial Purkinje fiber arborization and selective Purkinje fiber extinction after only endocardial ablation (not with epicardial ablation) was confirmed on histological analysis. CONCLUSIONS: Beyond the trigger paradigm, PMJs determine activation rate gradients during onset and during early maintenance of VF.


Subject(s)
Catheter Ablation , Ventricular Fibrillation , Animals , Endocardium , Epicardial Mapping , Humans , Muscles/surgery , Purkinje Fibers , Swine
17.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34863995

ABSTRACT

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Heart/drug effects , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Ion Channels/drug effects , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Electrophysiologic Techniques, Cardiac , Ether-A-Go-Go Potassium Channels , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Rabbits , Stereoisomerism
18.
Card Electrophysiol Clin ; 13(4): 569-584, 2021 12.
Article in English | MEDLINE | ID: mdl-34689887

ABSTRACT

The cardiac conduction system is formed of histologically and electrophysiologically distinct specialized tissues uniquely located in the human heart. Understanding the anatomy and pathology of the cardiac conduction system is imperative to an interventional electrophysiologist to perform safe ablation and device therapy for the management of cardiac arrhythmias and heart failure. The current review summarizes the normal and developmental anatomy of the cardiac conduction system, its variation in the normal heart and congenital anomalies, and its pathology and discusses important clinical pearls for the proceduralist.


Subject(s)
Atrioventricular Node , Heart Failure , Bundle of His , Heart Conduction System , Humans
19.
Circ Heart Fail ; 14(7): e007505, 2021 07.
Article in English | MEDLINE | ID: mdl-34190577

ABSTRACT

BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


Subject(s)
Action Potentials/physiology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Ventricular Remodeling/physiology , Animals , Cardiac Pacing, Artificial/adverse effects , Electrocardiography/methods , Heart Rate/physiology , Male , Models, Animal , Rabbits , X-Ray Microtomography/adverse effects
20.
MAGMA ; 34(4): 605-618, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33484367

ABSTRACT

OBJECTIVES: We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content. METHODS: Three fixed porcine ventricular samples were used with free-running PFs on the endocardium. T1, T2*, T2, and M0 were evaluated on 2D slices for each sample at 9.4 T. MT parameters were optimized using hard pulses with different amplitudes, offset frequencies and durations. The cardiac structure was assessed through 2D and 3D T1w images with isotropic resolutions of 150 µm. Histology, immunofluorescence, and qPCR were performed to analyze collagen contents of cardiac tissue and PF. RESULTS: An MT preparation module of 350 ms duration inserted into the sequence with a B1 = 10 µT and frequency offset = 3000 Hz showed the best contrast, approximately 0.4 between PFs and myocardium. Magnetization transfer ratio (MTR) appeared higher in the cardiac tissue (MTR = 44.7 ± 3.5%) than in the PFs (MTR = 25.2 ± 6.3%). DISCUSSION: MT significantly improves contrast between PFs and ventricular myocardium and appears promising for imaging the 3D architecture of the Purkinje network.


Subject(s)
Magnetic Resonance Imaging , Purkinje Fibers , Animals , Imaging, Three-Dimensional , Purkinje Fibers/diagnostic imaging , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...