Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 13(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36983859

ABSTRACT

BACKGROUND: The serological tests using blood stage antigens might be helpful for detecting recent exposure to Plasmodium parasites, and seroepidemiological studies would aid in the elimination of malaria. This work produced recombinant proteins of PvMSP142 variants and evaluated their capacity to detect IgG antibodies in symptomatic patients from Mesoamerica. METHODS: Three variant Pvmsp142 genes were cloned in the pHL-sec plasmid, expressed in the Expi293F™ eukaryotic system, and the recombinant proteins were purified by affinity chromatography. Using an ELISA, 174 plasma or eluted samples from patients infected with different P. vivax haplotypes were evaluated against PvMSP142 proteins and to a native blood stage antigen (NBSA). RESULTS: The antibody IgG OD values toward PvMSP142 variants (v88, v21, and v274) were heterogeneous (n = 178; median = 0.84 IQR 0.28-1.64). The correlation of IgG levels among all proteins was very high (spearman's rho = 0.96-0.98; p < 0.0001), but was lower between them and the NBSA (rho = 0.771; p < 0.0001). In only a few samples, higher reactivity to the homologous protein was evident. Patients with a past infection who were seropositive had higher IgG levels and lower parasitemia levels than those who did not (p < 0.0001). CONCLUSIONS: The PvMSP142 variants were similarly efficient in detecting specific IgG antibodies in P. vivax patients from Mesoamerica, regardless of the infecting parasite's haplotype, and might be good candidates for malaria surveillance and epidemiological studies in the region.

2.
Microorganisms ; 10(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35056635

ABSTRACT

For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993-2007) and pre-elimination phases (2008-2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima's D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.

SELECTION OF CITATIONS
SEARCH DETAIL