Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.818
Filter
1.
J Virol Methods ; : 114981, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004191

ABSTRACT

BACKGROUND: We previously undertook a prospective clinical study to evaluate PCR.Ai's (www.pcr.ai) accuracy and impact when automating the manual data-analysis and quality control steps associated with routine clinical pathogen testing using a non-quantitative multiplex quantitative real-time PCR (qPCR). In this study we demonstrated 100% concurrence between our manual routine analysis method and PCR.Ai. This paper expands the evaluation of PCR.Ai's (www.pcr.ai) accuracy and impact using a multiplex quantitative real-time PCR (qPCR). OBJECTIVES: We evaluated the impact of PCR.Ai when used as the final interpretation/verification step for routine in-house multiplex quantitative qPCR tests for CMV, EBV and adenovirus from blood samples for a total of 1,350 interpretations. STUDY DESIGN: We compared PCR.Ai to our existing manual interpretation, to determine accuracy and hands on time savings. RESULTS AND CONCLUSIONS: There was 100% concurrence between validated CMV, EBV and adenovirus detection and quantitation by our manual routine analysis method and PCR.Ai. Furthermore, there were significant routine savings with PCR.Ai of 63minutes/ run. Our conclusion is that for quantitative tests PCR.Ai is a highly accurate time-saving tool that reduces complexity of qPCR analysis and hence the need for specialists and hands-on time. It demonstrated capabilities to enable us to get results out more quickly with lower costs and less risk of errors.

2.
Anal Bioanal Chem ; 416(18): 4071-4082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958703

ABSTRACT

The study of glycoproteomics presents a set of unique challenges, primarily due to the low abundance of glycopeptides and their intricate heterogeneity, which is specific to each site. Glycoproteins play a crucial role in numerous biological functions, including cell signaling, adhesion, and intercellular communication, and are increasingly recognized as vital markers in the diagnosis and study of various diseases. Consequently, a quantitative approach to glycopeptide research is essential. One effective strategy to address this need is the use of multiplex glycopeptide labeling. By harnessing the synergies of 15N metabolic labeling via the isotopic detection of amino sugars with glutamine (IDAWG) technique for glycan parts and tandem mass tag (TMT)pro labeling for peptide backbones, we have developed a method that allows for the accurate quantification and comparison of multiple samples simultaneously. The adoption of the liquid chromatography-synchronous precursor selection (LC-SPS-MS3) technique minimizes fragmentation interference, enhancing data reliability, as shown by a 97% TMT labeling efficiency. This method allows for detailed, high-throughput analysis of 32 diverse samples from 231BR cell lines, using both 14N and 15N glycopeptides at a 1:1 ratio. A key component of our methodology was the precise correction for isotope and TMTpro distortions, significantly improving quantification accuracy to less than 5% distortion. This breakthrough enhances the efficiency and accuracy of glycoproteomic studies, increasing our understanding of glycoproteins in health and disease. Its applicability to various cancer cell types sets a new standard in quantitative glycoproteomics, enabling deeper investigation into glycopeptide profiles.


Subject(s)
Glycopeptides , Isotope Labeling , Nitrogen Isotopes , Tandem Mass Spectrometry , Glycopeptides/analysis , Glycopeptides/metabolism , Humans , Nitrogen Isotopes/analysis , Tandem Mass Spectrometry/methods , Isotope Labeling/methods , Proteomics/methods , Cell Line, Tumor , Chromatography, Liquid/methods
3.
Drug Test Anal ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978168

ABSTRACT

Previous liquid chromatography/mass spectrometry (LC/MS) methods for the detection of insulin and other similar peptide hormones in equine plasma relied on the use of antibody affinity extraction. As a result, these methods were not suitable for routine high-throughput analysis. A solid-phase extraction (SPE) method incorporating size exclusion as well as reversed-phase interactions allows the selective extraction of peptide hormones such as adrenocorticotropic hormone (ACTH), insulin and their synthetic analogues from equine plasma with approximately 80% extraction efficiencies. This extraction was combined with on-column derivatisation with acetic anhydride, followed by tryptic digestion and analysis by micro-LC/MSMS for high-sensitivity peptide hormone detection. The analysis of tryptic peptides provides greater sensitivity and more robust chromatography compared with the analysis of intact insulin and ACTH. For quantitative analysis, isotopically labelled internal standards of target peptides can be prepared in the laboratory through the use of deuterated acetic anhydride. The utility of the method was assessed for the analysis of ACTH and insulin in samples from horses suffering from pituitary pars intermedia dysfunction (PPID).

4.
JBMR Plus ; 8(7): ziae070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38868596

ABSTRACT

The International Society of Bone Morphometry (ISBM) is dedicated to advancing research, education, and clinical practice for osteoporosis and other bone disorders by developing and improving tools for the quantitative imaging and analysis of bone. Its initial core mission was to promote the proper use of morphometric techniques in bone research and to educate and train clinicians and basic scientists in bone morphometry. This article chronicles the evolution of the ISBM and the history and development of bone morphometric techniques for the past 50-years, starting with workshops on bone morphometry in 1973, to the formal incorporation of the ISBM in 1996, to today. We also provide a framework and vision for the coming decades. This effort was led by ISBM presidents Dr Erica L. Scheller (2022-2024) and Dr Thomas J. Wronski (2009-2012) in collaboration with all other living ISBM presidents. Though the underlying techniques and questions have changed over time, the need for standardization of established tools and discovery of novel approaches for bone morphometry remains a constant. The ISBM fulfills this need by providing a forum for the exchange of ideas, with a philosophy that encourages the open discussion of pitfalls and challenges among clinicians, scientists, and industry partners. This facilitates the rapid development and adaptation of tools to meet emerging demands within the field of bone health at a high level.

5.
J Agric Food Chem ; 72(25): 14433-14447, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38866717

ABSTRACT

JHBp2 is a peptide purified from Jinhua ham broth with antibacterial activity against Salmonella typhimurium. Untargeted metabolomics and label-free quantitative proteomics were used to analyze metabolic and protein expression changes in S. typhimurium after JHBp2 treatment. Cell wall and membrane damage results indicate that JHBp2 has membrane-disruptive properties, causing leakage of intracellular nucleic acids and proteins. Metabolomics revealed 516 differentially expressed metabolites, involving cofactor biosynthesis, purine metabolism, ABC transporters, glutathione metabolism, pyrimidine metabolism, etc. Proteomics detected 735 differentially expressed proteins, involving pyruvate metabolism, amino acid biosynthesis, purine metabolism, carbon metabolism, glycolysis/gluconeogenesis, etc. RT-qPCR and proteomics results showed a positive correlation, and molecular docking demonstrated stable binding of JHBp2 to some differentially expressed proteins. In summary, JHBp2 could disrupt the S. typhimurium cell wall and membrane structure, interfere with synthesis of membrane-related proteins, trigger intracellular substance leak, and reduce levels of enzymes and metabolites involved in energy metabolism, amino acid anabolism, and nucleotide anabolism.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Metabolomics , Molecular Docking Simulation , Proteomics , Salmonella typhimurium , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Swine , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Meat Products/microbiology , Meat Products/analysis
6.
ACS Nano ; 18(26): 16808-16818, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38870478

ABSTRACT

Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.


Subject(s)
Polymers , Polymers/chemistry , Animals , Drug Carriers/chemistry , Proteins/chemistry , Proteins/analysis , Mice , Nanoparticles/chemistry , Mass Spectrometry , Tissue Distribution
7.
Ann Nucl Med ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869809

ABSTRACT

OBJECTIVE: We aimed to establish a practical diagnostic index for Lewy body diseases (LBD), such as Parkinson's disease and dementia, with Lewy bodies in outpatient settings and criteria for exempting patients from late imaging. METHODS: We acquired early and late 123I-metaiodobenzylguanidine (MIBG) images from 108 consecutive patients with suspected LBD and standardized heart-to-mediastinum (H/M) ratios for collimator conditions. Exclusions included young-onset Parkinson's disease (age < 50 years) and genetic transthyretin-type amyloidosis. We developed logistic models incorporating H/M ratios with or without age (n = 92). The sympathetic MIBG index for LBD (SMILe index), categorized LBD likelihood from 0 (lowest) to 1 (highest). Diagnostic accuracy was assessed as the area under the receiver operating characteristic (ROC) curve (AUC). The characteristics of the new index were compared with H/M ratios. The need for late imaging was explored using the SMILe index. RESULTS: Early or late SMILe indexes using a single H/M ratio variable discriminated LBD from non-LBD. The AUC values for early and late SMILe indexes were 0.880 and 0.894 (p < 0.0001 for both), identical to those for early and late H/M ratios. The sensitivity and the specificity of early SMILe indexes with a 0.5 threshold were 76% and 90%, achieving accuracy of accuracy 86%. Similarly, the late SMILe index demonstrated a sensitivity of 76% and specificity of 87%, with an accuracy of 84%. Early SMILe indexes < 0.3 or > 0.7 (representing 84% patients) indicated a diagnosis without a late MIBG study. CONCLUSION: The 123I-MIBG-derived SMILe indexes provide likelihood of LBD, and those with a 50% threshold demonstrated optimal diagnostic accuracy for LBD. The index values of either < 0.3 or > 0.7 accurately selected patients who do not need late imaging.

8.
Food Chem ; 455: 139736, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823126

ABSTRACT

This study evaluated four ELISA kits for quantitation of milk proteins in thermally treated milk samples and food products. How reference materials may be used for comparison of kit performance was examined. Protein contents determined by Veratox Total Milk generally reflected those determined by the 660 nm total protein assay. BioKits BLG Kit was less affected by thermal treatment but resulted in overestimation of protein contents in samples that were boiled, autoclaved or dry-heated at ≤149 °C, while ELISA Systems Casein (ES Casein) and Beta-Lactoglobulin (ES BLG) assays underestimated protein levels in these samples. The four kits gave similar results for ice cream. Veratox registered higher concentrations in all products tested but its sensitivity was greatly lowered in retorted products. ES Casein underperformed Veratox for baked and retorted products. BioKits BLG maintained a better sensitivity towards fried, baked and retorted products while ES BLG exhibited reduced sensitivity for these products.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Hot Temperature , Milk Proteins , Milk , Animals , Milk/chemistry , Milk Proteins/analysis , Milk Proteins/chemistry , Cattle
9.
J Agric Food Chem ; 72(26): 15040-15052, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38906536

ABSTRACT

Wheat species with various ploidy levels may be different regarding their immunoreactive potential in celiac disease (CD), but a comprehensive comparison of peptide sequences with known epitopes is missing. Thus, we used an untargeted liquid chromatography tandem mass spectrometry method to analyze the content of peptides with CD-active epitope in the five wheat species common wheat, spelt, durum wheat, emmer, and einkorn. In total, 494 peptides with CD-active epitope were identified. Considering the average of the eight cultivars of each species, spelt contained the highest number of different peptides with CD-active epitope (193 ± 12, mean ± SD). Einkorn showed the smallest variability of peptides (63 ± 4) but higher amounts of certain peptides compared to the other species. The wheat species differ in the presence and distribution of CD-active epitopes; hence, the entirety of peptides with CD-active epitope is crucial for the assessment of their immunoreactive potential.


Subject(s)
Celiac Disease , Epitopes , Plant Proteins , Proteomics , Triticum , Celiac Disease/immunology , Triticum/chemistry , Triticum/immunology , Epitopes/immunology , Epitopes/chemistry , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/genetics , Humans , Tandem Mass Spectrometry , Peptides/immunology , Peptides/chemistry
10.
Article in English | MEDLINE | ID: mdl-38880056

ABSTRACT

Reactive aldehydes are a class of electrophilic low molecular weight compounds that play an essential role in physiological function and lipid peroxidation. These molecules are implicated in many diseases, especially cardiovascular and neurodegenerative diseases, and are potential endogenous markers of lipid peroxidation. However, there are limited options to accurately quantify multiple reactive aldehydes in brain tissue. This study developed and validated a 3-nitrophenylhydrazine derivatization-based LC-MS/MS method to quantify four reactive aldehydes: malondialdehyde, acrolein, 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Method development involved comparing the sensitivity of detection between widely used derivatization reagents: 2,4-dinitrophenylhydrazine and 3-nitrophenylhydrazine. Our data showed that 3-nitrophenylhydrazine resulted in greater sensitivity. Additional method development included evaluation of hydrolysis sample pretreatment, selection of protein precipitation reagent, and optimization of derivatization conditions. The optimized conditions included no hydrolysis and use of 20 % trichloroacetic acid as the protein precipitation reagent. The optimized derivatization condition was 25 mM 3-nitrophenylhydrazine reacted at 20 °C for 30 min. The chromatographic conditions were optimized to reduce matrix effects, ion suppression, and efficient analysis time (<7-minute analytical run). The four aldehyde species were accurately quantified in brain tissue using stable-labeled internal standards. Application of this assay to a traumatic brain injury mouse model revealed significant accumulation of acrolein, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal at 28 days post injury. Overall, a validated method was developed to rapidly quantify the most prominent reactive aldehydes associated with lipid peroxidation during injury progression following acute brain trauma.


Subject(s)
Aldehydes , Brain Chemistry , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Aldehydes/analysis , Aldehydes/chemistry , Mice , Chromatography, Liquid/methods , Reproducibility of Results , Male , Linear Models , Brain/metabolism , Limit of Detection , Mice, Inbred C57BL
11.
Article in English | MEDLINE | ID: mdl-38862429

ABSTRACT

DNA sequencers have become increasingly important research and diagnostic tools over the past 20 years. In this study, we developed a single-molecule desktop sequencer, GenoCare 1600 (GenoCare), which utilizes amplification-free library preparation and two-color sequencing-by-synthesis chemistry, making it more user-friendly compared with previous single-molecule sequencing platforms for clinical use. Using the GenoCare platform, we sequenced an Escherichia coli standard sample and achieved a consensus accuracy exceeding 99.99%. We also evaluated the sequencing performance of this platform in microbial mixtures and coronavirus disease 2019 (COVID-19) samples from throat swabs. Our findings indicate that the GenoCare platform allows for microbial quantitation, sensitive identification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and accurate detection of virus mutations, as confirmed by Sanger sequencing, demonstrating its remarkable potential in clinical application.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/virology , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Escherichia coli/genetics , Mutation
12.
J Microbiol Biotechnol ; 34(6): 1314-1321, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938006

ABSTRACT

Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dosedependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Hydroxy Acids , Gastrointestinal Microbiome/drug effects , Hydroxy Acids/metabolism , Hydroxy Acids/pharmacology , Probiotics , Caproates/metabolism , Caproates/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacteria/growth & development , Bacteria/genetics , Bacteria/classification , Lactobacillaceae/metabolism , Humans , Pentanoic Acids/metabolism
13.
J Forensic Sci ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38939982

ABSTRACT

A quantitative gas chromatography mass spectrometry (GC/MS) method was developed for delta-9-tetrahydrocannabinol (delta-9-THC), delta-8-tetrahydrocannabinol (delta-8-THC), tetrahydrocannabinolic acid (THCA), and cannabidiol (CBD) in matrices including plant material, liquids and oils, waxes, edibles, and bath and body products. Samples were prepared by homogenization, extraction of the cannabinoids into solvent, liquid/liquid extraction, and derivatization. The GC/MS method was validated from 0.15% to 5.00% (weight basis) to encompass the 0.3% legal distinction between hemp and marijuana. Validation was performed assessing imprecision/bias, calibration model, recovery, interferences, limit of detection, matrix matching, carryover, accuracy, and an assessment of CBD conversion to delta-9-THC. The calibration curves were quadratic weighted 1/x with r2 > 0.990. The method had a detection limit of 0.075% in plant material for each analyte. Analyte recovery was greater than 70% in plant material. Carryover was not observed up to concentrations equivalent to 100% analyte, and no forensically significant conversion of CBD to delta-9-THC was observed. One cannabinoid isomer, 9(R)-delta-7-tetrahydrocannabinol (9(R)-delta-7-THC), was determined to interfere with the quantitation of delta-9-THC, but could be differentiated based on mass spectrum. The method was determined to be suitable for quantitation of delta-9-THC, delta-8-THC, delta-9-THCA, and CBD and was able to differentiate hemp samples from marijuana samples.

14.
J Proteomics ; 303: 105224, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38866132

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive form of blood cancer and clinically highly heterogeneous characterized by the accumulation of clonally proliferative immature precursors of myeloid lineage leading to bone marrow failure. Although, the current diagnostic methods for AML consist of cytogenetic and molecular assessment, there is a need for new markers that can serve as useful candidates in diagnosis, prognosis and understanding the pathophysiology of the disease. This study involves the investigation of alterations in the bone marrow interstitial fluid and serum proteome of AML patients compared to controls using label-free quantitative proteomic approach. A total of 201 differentially abundant proteins were identified in AML BMIF, while in the case of serum 123 differentially abundant proteins were identified. The bioinformatics analysis performed using IPA revealed several altered pathways including FAK signalling, IL-12 signalling and production of macrophages etc. Verification experiments were performed in a fresh independent cohort of samples using MRM assays led to the identification of a panel of three proteins viz., PPBP, APOH, ENOA which were further validated in a new cohort of serum samples by ELISA. The three-protein panel could be helpful in the diagnosis, prognosis and understanding of the pathophysiology of AML in the future. BIOLOGICAL SIGNIFICANCE: Acute Myeloid Leukemia (AML) is a type haematological malignancy which constitute one third of total leukemias and it is the most common acute leukemia in adults. In the current clinical practice, the evaluation of diagnosis and progression of AML is largely based on morphologic, immunophenotypic, cytogenetic and molecular assessment. There is a need for new markers/signatures which can serve as useful candidates in diagnosis and prognosis. The present study aims to identify and validate candidate biosignature for AML which can be useful in diagnosis, prognosis and understand the pathophysiology of the disease. Here, we identified 201 altered proteins in AML BMIF and 123 in serum. Among these altered proteins, a set of three proteins viz., pro-platelet basic protein (CXCL7), enolase 1 (ENO1) and beta-2-glycoprotein 1 (APOH) were significantly increased in AML BMIF and serum suggest that this panel of proteins could help in future AML disease management and thereby improving the survival expectancy of AML patients.


Subject(s)
Bone Marrow , Extracellular Fluid , Leukemia, Myeloid, Acute , Proteome , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Male , Proteome/analysis , Proteome/metabolism , Female , Middle Aged , Bone Marrow/metabolism , Bone Marrow/pathology , Adult , Extracellular Fluid/metabolism , Biomarkers, Tumor/blood , Neoplasm Proteins/blood , Neoplasm Proteins/metabolism , Aged , Proteomics/methods
15.
MethodsX ; 12: 102729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707216

ABSTRACT

This HPLC method is suitable for chitin quantitation (reported as glucosamine) in food raw materials like insects (mealworm larvae, crickets), shrimps, mushrooms and fungi in a research (non-routine) laboratory using a C18 column with HPLC system <600 bar with UV detection capability (at 265 nm). To remove interferences, the sample is defatted (Soxhlet) and deproteinized (by alkali) prior to acid hydrolysis in 6 M HCl. A five-point linear calibration (5-100 µg/mL) is used. The use of fluorescence detection (λex = 260 nm, λem = 350 nm) is also possible with this method [1].•18 min HPLC run time•LOD = 0.05 µg/mL and LOQ = 5 µg/mL.

16.
J Am Soc Mass Spectrom ; 35(7): 1441-1450, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38815255

ABSTRACT

Currently, glycopeptide quantitation is mainly based on relative quantitation due to absolute quantitation requiring isotope-labeled or standard glycopeptides which may not be commercially available or are very costly and time consuming to synthesize. To address this grand challenge, coulometric mass spectrometry (CMS), based on the combination of electrochemistry (EC) and mass spectrometry (MS), was utilized to quantify electrochemically active glycopeptides without the need of using standard materials. In this study, we studied tyrosine-containing glycopeptides, NYIVGQPSS(ß-GlcNAc)TGNL-OH and NYSVPSS(ß-GlcNAc)TGNL-OH, and successfully quantified them directly with CMS with a discrepancy of less than 5% between the CMS measured amount and the theoretical amount. Taking one step further, we applied this approach to quantify glycopeptides generated from the digestion of NIST mAb, a monoclonal antibody reference material. Through HILIC column separation, five N297 glycopeptides resulting from NIST mAb tryptic digestion were successfully separated and quantified by CMS for an absolute amount without the use of any standard materials. This study indicates the potential utility of CMS for quantitative proteomics research.


Subject(s)
Glycopeptides , Mass Spectrometry , Oxidation-Reduction , Glycopeptides/analysis , Glycopeptides/chemistry , Mass Spectrometry/methods , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/analysis , Proteomics/methods , Proteomics/standards , Tyrosine/analysis , Tyrosine/chemistry , Electrochemical Techniques/methods
17.
Diagn Microbiol Infect Dis ; 109(4): 116357, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776663

ABSTRACT

We aimed to compare the NeuMoDx HBV Assay with the artus HBV Assay using residual plasma samples and to evaluate the discordant results. The study included 200 patient samples analyzed with the NMD assay and stored at -80 °C. Samples were analyzed by artus in 2023. Discordant results were evaluated by cobas 6800 HBV DNA Test. Excellent agreement was found between both tests. Of the 100 samples that were HBV DNA negative by NMD, 93 were negative and 7 were positive by artus. With the Cobas test, 5 samples were positive. Of the100 HBV DNA positive samples detected by NMD, 99 were positive with the artus assay. This sample was also HBV DNA negative by the Cobas test. The sensitivity and specificity of NeuMoDx were found 93 % and 99 %, respectively. There was excellent qualitative agreement and strong quantitative correlation between the NeuMoDx and artus assays for HBV DNA detection and quantitation.


Subject(s)
DNA, Viral , Hepatitis B virus , Hepatitis B , Sensitivity and Specificity , Humans , DNA, Viral/blood , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepatitis B/diagnosis , Hepatitis B/virology , Hepatitis B/blood , Viral Load/methods , Reagent Kits, Diagnostic/standards , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Plasma/virology
18.
EJNMMI Rep ; 8(1): 15, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822219

ABSTRACT

BACKGROUND AND PURPOSE: The ability of [123I]metaiodobenzylguanidine (MIBG) sympathetic nerve imaging with three-dimensional (3D) quantitation to clinically diagnose neurological disorders has not been evaluated. This study compared absolute heart counts calculated as mean standardized uptake values (SUVmean) using conventional planar imaging and assessed the contribution of [123I]MIBG single-photon emission computed tomography (SPECT)-CT to the diagnosis of neurological diseases. METHODS: Seventy-two patients with neurological diseases were consecutively assessed using early and delayed [123I]MIBG SPECT-CT and planar imaging. Left ventricles were manually segmented in early and delayed SPECT-CT images, then the SUVmean and washout rates (WRs) were calculated. Heart-to-mediastinum ratios (HMRs) and WRs on planar images were conventionally computed. We investigated correlations between planar HMRs and SPECT-CT SUVmeans and between WRs obtained from planar and SPECT-CT images. The cutoff for SPECT-CT WRs defined by linear regression and that of normal planar WRs derived from a database were compared with neurological diagnoses of the patients. We assigned the patients to groups according to clinical diagnoses as controls (n = 6), multiple system atrophy (MSA, n = 7), progressive supranuclear palsy (PSP, n = 17), and Parkinson's disease or dementia with Lewy bodies (PD/DLB, n = 19), then compared SPECT-CT and planar image parameters. RESULTS: We found significant correlations between SPECT-CT SUVmean and planar HMR on early and delayed images (R2 = 0.69 and 0.82, p < 0.0001) and between SPECT-CT and planar WRs (R2 = 0.79, p < 0.0001). A threshold of 31% for SPECT-CT WR based on linear regression resulted in agreement between planar and SPECT-CT WR in 67 (93.1%) of 72 patients. Compared with controls, early and delayed SUVmean in patients with PSP and MSA tended more towards significance than planar HMR. This trend was similar for SPECT-CT WRs in patients with PSP. CONCLUSIONS: Absolute heart counts and SUVmean determined using [123I]MIBG SPECT-CT correlated with findings of conventional planar images in patients with neurological diseases. Three-dimensional quantitation with [123I]MIBG SPECT-CT imaging might differentiate patients with PSP and MSA from controls.

19.
Heliyon ; 10(10): e31213, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799737

ABSTRACT

A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.

20.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611915

ABSTRACT

Vitamin D (Vit D) is a fat-soluble molecule acting like a hormone, and it is involved in several biological mechanisms such as gene expression, calcium homeostasis, bone metabolism, immune modulation, viral protection, and neuromuscular functions. Vit D deficiency can lead to chronic hypocalcemia, hyperparathyroidism, and many other pathological conditions; in this context, low and very low levels of 25-hydroxy-vitamin D (25-OH-D) were found to be associated with an increased risk of COVID-19 infection and the likelihood of many severe diseases. For all these reasons, it is important to quantify and monitor 25-OH-D levels to ensure that the serum/blood concentrations are not clinically suboptimal. Serum concentration of 25-OH-D is currently the main indicator of Vit D status, and it is currently performed by different assays, but the most common quantitation techniques involve immunometric methods or chromatography. Nevertheless, other quantitation techniques and instruments are now emerging, such as AFIAS-1® and AFIAS-10® (Boditech and Menarini) based on the immunofluorescence analyzer, that guarantee an automated system with cartridges able to give quick and reliable results as a point-of-care test (POCT). This work aims to compare AFIAS-1® and AFIAS-10® (Boditech and Menarini) Vit D quantitation with Ultra High-Performance Liquid Chromatography coupled with tandem mass spectrometry that currently represents the gold standard technique for Vit D quantitation. The analyses were performed in parallel on 56 samples and in different conditions (from fresh and frozen plasma) to assess the reliability of the results. Any statistically significant differences in methods, the fixed error, and the error proportional to concentration were reported. Results obtained in all conditions showed a good correlation between both AFIAS® instruments and LC-MS/MS, and we can affirm that AFIAS-1® and AFIAS-10® are reliable instruments for measuring 25-OH-D with accuracy and in a fast manner.


Subject(s)
Tandem Mass Spectrometry , Vitamin D , Chromatography, Liquid , Reproducibility of Results , Vitamins , Fluorescent Antibody Technique , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL
...