Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3566-3573, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041128

ABSTRACT

This study established an ultra-performance liquid chromatography(UPLC) fingerprint of abandoned stems and leaves of Artemisia selengensis and quantitative analysis of multi-components by single marker(QAMS) for five phenolic acid components. Waters Acquity UPLC BEH C_(18) chromatography column(2.1 mm×100 mm, 1.7 µm) was used. The gradient elution was carried out with the mobile phase composed of 0.1% phosphoric acid water and acetonitrile at a flow rate of 0.3 mL·min~(-1) and a column temperature at 30 ℃. The detection wavelength was 330 nm, and the injection volume was 2 µL. Similarity evaluation and cluster analysis were conducted on the fingerprint data, and 15 common components in 13 batches of abandoned stems and leaves of A. selengensis were identified. The relative correction factors of ferulic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C were calculated using chlorogenic acid as the internal reference. The QAMS for determining five components in the abandoned stems and leaves of A. selengensis was established. At the same time, the content of these five components was determined using the external standard method(ESM), and the results showed that there were no significant differences in their content determined by the QAMS and the ESM. The results indicated that the content of phenolic acid components in the abandoned stems and leaves of A. selengensis from different varieties and different origins had obvious differences. In addition, the content of phenolic acid components in the abandoned stems and leaves of lignified A. selengensis was significantly higher than that of non-lignified A. selengensis. In summary, QAMS established in this study can be quickly, accurately, and economically used to determine the content of five phenolic acid components in abandoned stems and leaves of A. selengensis, laying a foundation for the resource development and utilization of abandoned stems and leaves of A. selengensis.


Subject(s)
Artemisia , Hydroxybenzoates , Plant Leaves , Plant Stems , Quality Control , Plant Leaves/chemistry , Plant Stems/chemistry , Artemisia/chemistry , Chromatography, High Pressure Liquid/methods , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
2.
J Pharm Biomed Anal ; 247: 116205, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38843613

ABSTRACT

The P. heterophylla and its adulterants were identified by HPLC-CAD fingerprint of sucrose and oligosaccharides in P. heterophylla. The improved quantitative analysis of multi-components with a single marker (iQAMS) was further established for simultaneous determinations of sucrose and oligosaccharides in P. heterophylla. The HPLC-CAD fingerprint and similarity coefficients between P. heterophylla and its adulterants showed significant differences. The relative errors (REs) between iQAMS method and external standard method (ESM) were below 3.00%, but significant difference was shown between iQAMS (different marker for whole program with gradient elution) and QAMS (one marker for whole program with gradient elution), indicating that QAMS method should be improved, especially for gradient elution which influence the response of analytes. The accuracy, precision, reproducibility, and stability of this method were validated which exhibited satisfactory results, indicating that iQAMS method could be used for quantitative analysis of sucrose and oligosaccharides in P. heterophylla instead of ESM. The iQAMS combined with HPLC-CAD fingerprint could be used to determine the content of each oligosaccharide, and it can be used for quality control of P. heterophylla.


Subject(s)
Drug Contamination , Oligosaccharides , Sucrose , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Oligosaccharides/analysis , Oligosaccharides/chemistry , Sucrose/analysis , Sucrose/chemistry , Drug Contamination/prevention & control , Quality Control , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry
3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621905

ABSTRACT

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Subject(s)
Anthracenes , Drugs, Chinese Herbal , Epimedium , Perylene/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Chlorogenic Acid , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry
4.
J Ethnopharmacol ; 331: 118220, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38657878

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW: This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS: Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS: According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS: The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.


Subject(s)
Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Humans , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/chemistry , Quality Control , Medicine, Chinese Traditional
5.
MethodsX ; 12: 102643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38510935

ABSTRACT

Mousy off-flavor describes N-heterocycles compounds related to spoilage in the brewing industry. It has also been identified in sour beers through sensory analysis. Therefore, preventing spoilage N-heterocycles development is essential to preserve end-products and obviate economic losses. To this day, no methods or protocols have been reported to identifying mousy off-flavor compounds in a beer matrix. The main objective of this work was to develop a standardized quantification method for 2-acetyl-3,4,5,6-tetrahydropyridine (ATHP) in beer matrix, by Liquid Chromatography Mass Spectrometry with Electrospray Ionization (LC-MS-ESI). Extraction of ATHP in the samples was performed using QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique. Over a dozen different potentially mousy cask-aged sour beers including other spontaneously fermented beverages were provided, based on sensory analysis, to determine the variation in ATHP levels. Results indicated ATHP was found in all the samples, ranging from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1. Herein, we described our detection method of mousy-off flavor compounds which enables future research to mitigate the occurrence of such defects in fermented beverages matrix.•ATHP content in samples varied from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1.•The recovery range of ATHP using LC-MS-ESI varied from 71% to 97%.•Basified QuEChERS salting-out procedure is applicable for ATHP extraction from beer and other fermented beverages matrices.

6.
Ultramicroscopy ; 259: 113927, 2024 May.
Article in English | MEDLINE | ID: mdl-38330596

ABSTRACT

The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.

7.
China Pharmacy ; (12): 560-565, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012573

ABSTRACT

OBJECTIVE To extract and isolate the four chemical components of Yao medicine Ventilago leiocarpa, and to conduct identification and content determination for them. METHODS The chemical components of V. leiocarpa were separated and purified by solvent extraction, extraction, silica gel column chromatography and preparative liquid chromatography; then the chemical structures of four isolated compounds were identified based on their spectral data. The contents of four components were determined by high performance liquid chromatography(HPLC)-quantitative analysis of multi-components by single-marker (QAMS) method, with the following chromatographic conditions: chromatographic column was Echway GowonTM C18 (250 mm× 4.6 mm, 5 μm). The mobile phase was acetonitrile-0.1% phosphoric acid for gradient elution; the detection wavelength was 269 nm, and the column temperature was 25 ℃ . Using emodin as internal reference, the relative correction factors (fi/s) between emodin and the other 3 components were established and used to calculate the content. At the same time, the content of each component was calculated with the external standard method (ESM), and the differences between these two methods were compared. RESULTS Four compounds were isolated from V. leiocarpa, and they were identified as emodin, frangulin A, pleuropyrone A, emodin-8-O-β-D-glucoside. The result of HPLC-QAMS showed that the fi/s of pleuropyrone A, emodin-8-O-β-D- glucoside and frangulin A were 1.147 2, 0.874 7 and 0.644 4, respectively. The content of these four components was measured as a good linearity (r≥0.999 6); relative standard deviation (RSD) of precision, stability and reproducibility tests were all lower than 2.00%, and average recoveries were E-mail:dearhuangjianyou@126.com 99.41%-100.46%(RSD≤2.05%). There was no significant difference between QAMS method and ESM (RSD<3.00%). CONCLUSIONS Emodin, frangulin A, pleuropyrone A and emodin- 8-O-β-D-glucoside are isolated from V. leiocarpa; among them, the last three components are all isolated from for the first time. The established HPLC-QAMS method is accurate and reliable for the determination of 4 components in V. leiocarpa, and can used for quality control of V. leiocarpa.

8.
Biol Proced Online ; 25(1): 31, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036976

ABSTRACT

BACKGROUND: Renal cancer therapies are challenging owing to the extensive spreading of this cancer to other organs and its ability to pose resistance to current medications. Therefore, drugs targeting novel targets are urgently required to overcome these challenges. The cholesterol side-chain cleavage enzyme (CYP11A1) is closely associated with steroidogenesis, and its downregulation is linked to adrenal dysfunction and several types of carcinoma. We previously found that overexpression of CYP11A1 inhibited epithelial-mesenchymal transition and induced G2/M arrest in the kidney cancer Caki-1 cell line. In this context, natural compounds that exhibit potent CYP11A1 stimulation activity can be promising therpaeutic agents for kidney cancer. METHODS: We screened a panel of 1374 natural compounds in a wound-healing assay using CYP11A1-transfected Caki-1 cells. Of these, 167 promising biologically active compounds that inhibited cancer cell migration by more than 75% were selected, and their half-maximal inhibitory concentrations (IC50) were determined. The IC50 of 159 compounds was determined and 38 compounds with IC50 values less than 50 µM were selected for further analysis. Steroid hormones (cholesterol and pregnenolone) levels in cells treated with the selected compounds were quantitated using LC-MS/MS to determine their effect on CYP11A1 activity. Western blotting for CYP11A1, autophagy signaling proteins, and ferroptosis regulators were performed to ivestigate the mechanisms underlying the action of the selected compounds. RESULTS: We screened five promising natural lead compounds that inhibited cancer cell proliferation after three screening steps. The IC50 of these compounds was determined to be between 5.9 and 14.6 µM. These candidate compounds increased the expression of CYP11A1 and suppressed cholesterol levels while increasing pregnenolone levels, which is consistent with the activation of CYP11A1. Our results showed that CYP11A1 activation inhibited the migration of cancer cells, promoted ferroptosis, and triggered autophagy signaling. CONCLUSIONS: This study indicates that the CYP11A1-overexpressing Caki-1 cell line is useful for screening drugs against kidney cancer. The two selected compounds could be utilized as lead compounds for anticancer drug discovery, and specifically for the development of antirenal cancer medication.

9.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4675-4685, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802806

ABSTRACT

The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.


Subject(s)
Berberine , Diabetic Nephropathies , Drugs, Chinese Herbal , Humans , Tandem Mass Spectrometry , Berberine/pharmacology , Chromatography, High Pressure Liquid/methods , Network Pharmacology , Drugs, Chinese Herbal/chemistry , Quality Control , Tablets
10.
Sci Total Environ ; 904: 166862, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37689193

ABSTRACT

High­arsenic (As) sinter deposited from geothermal water is a potentially overlooked hazardous matrix and there remain substantial gaps in our comprehension of the stability of As sequestered within it. In this study, qualitative and quantitative analysis of the mineralogy of As-bearing sinter was conducted by Mineral Liberation Analyzer (MLA) in geothermal areas of the Tibetan Plateau to reveal the geochemical stability of As. Our results indicated that the contents of As in sinter were 3 orders of magnitude higher than the local soil. The dominant host minerals of As were calcite (40.9 %), thenardite (22.5 %), calcium silicate (13.0 %), and halite (8.1 %). Additionally, it was found that a relatively higher As bioavailability was extracted by ethylene diamine tetraacetic acid (EDTA), with a leaching rate of 41.2 %. Notably, the X-ray diffraction (XRD) showed that the thenardite and halite were decomposed after the leaching. The combination of mineralogy and geochemistry data suggested that calcite and calcium silicate were a crucial mechanism for As retention in sinter, while the dissolution of saline minerals (e.g., thenardite, halite, and calcium chloride) served as the primary sources for As release. This finding unveils the potential risks and mechanisms associated with high-As sinter, providing scientific guidance for risk management of sinter.

11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 195-206, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37283104

ABSTRACT

OBJECTIVES: To detect the contents of Tangwei capsule main components with high performance liquid chromatography-quantitative analysis of multicomponents by single marker (HPLC-QAMS) method and to evaluate the quality with chemometrics and entropy weight-technique for order preference by similarity to an ideal solution (EW-TOPSIS). METHODS: A symmetry C18 column and 0.1% formic acid-acetonitrile as mobile phase were used for HPLC of Tangwei capsule. The contents of 3'-hydroxypuerarin, puerarin, 3'-methoxypuerarin, methylnissolin-3-O-glucoside, calycosin, formononetin, rosmarinic acid, salvianolic acid B, dihydrotanshinone Ⅰ, cryptotanshinone, tanshinone Ⅰ, tanshinone ⅡA and cucurbitacin B in 15 batches of Tangwei capsule were determined simultaneously. The quality differences of 15 batches of samples were analyzed by chemometrics and EW-TOPSIS. RESULTS: The HPLC-UV showed that 13 components had good linear relationships in corresponding concentration ranges (r≥0.9991). The relative standard deviations (RSD) of precision, repeatability and stability were all less than 2.00%. The average recovery rates were between 96.86% and 100.13%, and RSD were all less than 2.00%. Cluster analysis showed that 15 batches of samples were clustered into 3 groups. Partial least squares-discriminant analysis showed that salvianolic acid B, formononetin, puerarin, 3'-methoxypuerarin and rosmarinic acid were the main potential markers affecting the quality of Tangwei capsule. EW-TOPSIS analysis showed that the quality of S12-S15 was superior. CONCLUSIONS: The analytical method established in this study can be used for the comprehensive evaluation of the quality of Tangwei capsule to provide laboratory support for its quality control and overall evaluation.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Chemometrics , Entropy , Rosmarinic Acid
12.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674641

ABSTRACT

Due to the great significance of amino acids, a substantial number of research studies has been directed toward the development of effective and reliable platforms for their evaluation, detection, and identification. In order to support these studies, a new electrochemical platform based on PANI/ZnO nanowires' modified carbon inks screen-printed electrodes was developed for qualitative analysis of electroactive amino acids, with emphasis on tyrosine (Tyr) and tryptophan (Trp). A comparative investigation of the carbon ink before and after modification with the PANI/ZnO was performed by scanning electron microscopy and by Raman spectroscopy, confirming the presence of PANI and ZnO nanowires. Electrochemical investigations by cyclic voltammetry and electrochemical impedance spectroscopy have shown a higher charge-transfer rate constant, which is reflected into lower charge-transfer resistance and higher capacitance values for the PANI/ZnO modified ink when compared to the simple carbon screen-printed electrode. In order to demonstrate the electrochemical performances of the PANI/ZnO nanowires' modified carbon inks screen-printed electrodes for amino acids analysis, differential pulse voltammograms were obtained in individual and mixed solutions of electroactive amino acids. It has been shown that the PANI/ZnO nanowires' modified carbon inks screen-printed electrodes allowed for tyrosine and tryptophan a peak separation of more than 100 mV, enabling their screening and identification in mixed solutions, which is essential for the electrochemical analysis of proteins within the proteomics research field.


Subject(s)
Carbon , Zinc Oxide , Carbon/chemistry , Amino Acids , Ink , Tryptophan , Zinc Oxide/chemistry , Tyrosine , Electrodes , Electrochemical Techniques/methods
13.
Article in English | WPRIM (Western Pacific) | ID: wpr-982035

ABSTRACT

OBJECTIVES@#To detect the contents of Tangwei capsule main components with high performance liquid chromatography-quantitative analysis of multicomponents by single marker (HPLC-QAMS) method and to evaluate the quality with chemometrics and entropy weight-technique for order preference by similarity to an ideal solution (EW-TOPSIS).@*METHODS@#A symmetry C18 column and 0.1% formic acid-acetonitrile as mobile phase were used for HPLC of Tangwei capsule. The contents of 3'-hydroxypuerarin, puerarin, 3'-methoxypuerarin, methylnissolin-3-O-glucoside, calycosin, formononetin, rosmarinic acid, salvianolic acid B, dihydrotanshinone Ⅰ, cryptotanshinone, tanshinone Ⅰ, tanshinone ⅡA and cucurbitacin B in 15 batches of Tangwei capsule were determined simultaneously. The quality differences of 15 batches of samples were analyzed by chemometrics and EW-TOPSIS.@*RESULTS@#The HPLC-UV showed that 13 components had good linear relationships in corresponding concentration ranges (r≥0.9991). The relative standard deviations (RSD) of precision, repeatability and stability were all less than 2.00%. The average recovery rates were between 96.86% and 100.13%, and RSD were all less than 2.00%. Cluster analysis showed that 15 batches of samples were clustered into 3 groups. Partial least squares-discriminant analysis showed that salvianolic acid B, formononetin, puerarin, 3'-methoxypuerarin and rosmarinic acid were the main potential markers affecting the quality of Tangwei capsule. EW-TOPSIS analysis showed that the quality of S12-S15 was superior.@*CONCLUSIONS@#The analytical method established in this study can be used for the comprehensive evaluation of the quality of Tangwei capsule to provide laboratory support for its quality control and overall evaluation.


Subject(s)
Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Chemometrics , Entropy
14.
China Pharmacy ; (12): 1826-1829, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979931

ABSTRACT

OBJECTIVE To establish the methods for simultaneous determination of rutin, forsythiaside A, (+)-pinoresinol-4- O-β-D-glucopyranoside, forsythin and forsythigenin in Forsythia suspensa flower. METHODS UPLC method was adopted. The determination was performed on ACQUITY UPLC HSS T3 C18 column with mobile phase consisted of acetonitrile-0.1% phosphoric acid solution (gradient elution) at the flow rate of 0.3 mL/min. The detection wavelengths were set at 275 nm (0-8 min),330 nm (8-10.5 min),275 nm (10.5-32 min), respectively. The column temperature was 25 ℃, and sample size was 1 μL. Taking rutin as reference, the content of each component was determined by quantitative analysis of multi-components by single-marker (QAMS) method, and then compared with external standard method. RESULTS The contents of forsythiaside A, (+)-pinoresinol-4-O-β-D- glucopyranoside, forsythin and forsythigenin by QAMS were 7.472-7.671, 2.919-2.986, 1.439-1.486, 1.523-1.566 mg/g; the results obtained by the external standard method were 7.454-7.664, 2.913-2.996, 1.444-1.484, 1.519-1.562 mg/g, respectively. There was no significant difference in the measurement results between the two methods, with a relative deviation less than 1.0%. CONCLUSIONS This study successfully establishes the UPLC-QAMS method for simultaneous determination of five components in F. suspensa flower, and the results obtained by this method are not significantly different from those obtained by the external standard method. It can be used for quality control of F. suspensa flower.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008634

ABSTRACT

The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.


Subject(s)
Humans , Tandem Mass Spectrometry , Berberine/pharmacology , Chromatography, High Pressure Liquid/methods , Network Pharmacology , Diabetic Nephropathies , Drugs, Chinese Herbal/chemistry , Quality Control , Tablets
16.
China Pharmacy ; (12): 1703-1706, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978961

ABSTRACT

OBJECTIVE To establish a quantitative analysis of multi-components by single marker (QAMS) method for simultaneous determination of 10 ganoderic acids in Ganoderma lucidum. METHODS Using ganoderic acid A as internal reference, high-performance liquid chromatography (HPLC) method was adopted to calculate relative correction factors of the other 9 components, such as ganoderic acid B, ganoderic acid C2, ganoderic acid D, ganoderic acid F, ganoderic acid H, ganoderenic acid A, ganoderenic acid B, ganoderenic acid C, ganoderenic acid D; the contents of above ganoderic acids were calculated with relative correction factors, and compared with the results of external standard method. RESULTS The linear relationship of ganoderic acid A, ganoderic acid B, ganoderic acid C2, ganoderic acid D, ganoderic acid F, ganoderic acid H, ganoderenic acid A, ganoderenic acid B, ganoderenic acid C and ganoderenic acid D were 0.032-3.996, 0.040-4.971, 0.037-4.568, 0.028-3.558, 0.033-4.177, 0.044-5.440, 0.032-3.944, 0.040-4.994, 0.045-5.593 and 0.035-4.342 mg/mL (all R 2≥0.999 2), respectively. RSDs of precision, stability (24 h) and reproducibility tests were all lower than 2%. Their average recovery rates were 99.43%, 100.25%, 98.50%, 99.88%, 100.59%, 99.64%, 98.50%, 99.40%, 99.64% and 99.76%, respectively (RSD<2%, n=6). Relative correction factors of ganoderic acid B, ganoderic acid C2, ganoderic acid D, ganoderic acid F, ganoderic acid H, ganoderenic acid A, ganoderenic acid B, ganoderenic acid C and ganoderenic acid D were 1.788 5, 1.288 2, 1.126 4, 1.698 5, 0.885 4, 5.468 1, 4.210 9, 5.780 8, 4.290 3, respectively. Relative errors between the content obtained by QAMS method and external standard method for G. lucidum from different origins were within ±12%. CONCLUSIONS It is feasible that the contents of 10 ganoderic acids are determined simultaneously by QAMS method, using ganoderic acid A as internal reference. This method shows good precision and reproducibility and can be used for the quality control of G. lucidum.

17.
Acta Pharmaceutica Sinica ; (12): 2763-2770, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999007

ABSTRACT

A quantitative analysis of multi-components by single marker method (QAMS) was established for simultaneous determination of gallic acid, protocatechuic acid, catechin, epicatechin, p-coumaric acid, ferulic acid and phloridzin in Cynomorium songaricum Rupr. The analysis was performed on a ChromCore Polae C18 column (250 mm×4.6 mm, 5 μm) , with a mobile phase consisting of acetonitrile-0.3% phosphoric acid aqueous solution for gradient elution. The volume flow rate, column temperature and sample injection volume were set at 1.0 mL·min-1, 25 ℃, and 40 µL, respectively. The relative correction factors of gallic acid and protocatechuic acid, catechin, epicatechin, p-coumaric acid, ferulic acid and phloridzin were calculated and the durability was also investigated. The contents of these seven compounds in fourteen batches of Cynomorium songaricum Rupr. from different producing areas or batches were determined by external standard method (ESM) and quantitative analysis of multi-components with a single-marker method (QAMS), respectively. SPSS and Origin Pro software were employed for principal components assay, similarity evaluation and cluster analysis. The specificity, precision, repeatability, stability and linear range (R2 > 0.999 0) of the seven components were all good. The average recovery was 96.89%-103.16% and RSD was 0.55%-2.76%. Then gallic acid was chosen as internal reference for calculation the correction factors for the other six components, the average relative correction factors of protocatechuic acid, catechin, epicatechin, p-coumaric acid, ferulic acid and phloridzin were 1.141 5, 0.200 5, 0.208 0, 2.361 9, 1.867 7, 0.204 6, respectively. Student's test results showed that there was no significant difference between the data analyzed by ESM and the data obtained from QAMS method. Through data visualization analysis, the contents of gallic acid, protocatechuic acid, catechin and epicatechin in different samples were significantly different, indicating that these four components might be the main quality markers of Cynomorium songaricum Rupr. for gaving more contributes to the principal components. The cluster analysis showed that samples from Xinjiang and samples from Inner Mongolia were clustered in significantly different categories, meaning that the quality of Cynomorium songaricum Rupr. had great relation with producing areas. The method of QAMS established in this study is a simple, economical and practical method with scientific and applicable charactistics for evaluating the quality of Cynomorium songaricum Rupr. efficiently and scientifically.

18.
China Pharmacy ; (12): 2727-2733, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-998556

ABSTRACT

OBJECTIVE To establish the fingerprint and multi-component content determination method of Crataegus pinnatifida leaves from different producing areas, and to evaluate the quality of C. pinnatifida leaves and screen the differential markers. METHODS Seventy-eight batches of C. pinnatifida leaves were collected from Chengde of Hebei Province, Huludao of Liaoning Province, Yuncheng of Shanxi Province and Linyi of Shandong Province. High-performance liquid chromatography (HPLC) and Similarity Evaluation System for Traditional Chinese Medicine Chromatographic Fingerprints (2012 edition) were used to draw the fingerprints and conduct similarity evaluation. Grey correlation analysis, cluster analysis (CA), principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed by using SPSS 19.0, MetaboAnalyst 5.0 and SIMCA 14.1 software. The differential markers affecting the quality of C. pinnatifida leaves were screened with variable importance in the projection (VIP) value greater than 1 and the error line not exceeding the origin as the criterion. Using vitexin rhamnoside as an internal reference, the contents of chlorogenic acid, glucosylvitexin, hypericin and isoquercetin in 78 batches of C. pinnatifida leaves were determined by the same HPLC combined with quantitative analysis of multi- components by single-marker (QAMS), and the results were compared with external standard method. RESULTS Eight common peaks were calibrated in the fingerprints for 78 batches of C. pinnatifida leaves from 4 producing areas. Five known components were identified, including chlorogenic acid (peak 1), glucosylvitexin (peak 3), vitexin rhamnoside (peak 4), hypericin (peak 7) and isoquercetin (peak 8); their similarities ranged from 0.871 to 0.998. Average relative correlations of samples from Chengde of Hebei Province, Huludao of Liaoning Province, Yuncheng of Shanxi Province and Linyi of Shandong Province were 0.538, 0.528, 0.462 and 0.435, respectively. CA and PCA showed that the samples from Chengde of Hebei Province and Huludao of Liaoning Province were roughly classified into one category, while the samples from Linyi of Shandong Province and Yuncheng of Shanxi Province were roughly classified into one category; VIP values of peak 1, 2, 3 and 5 were all greater than 1. By QAMS, the relative correction factors of chlorogenic acid, glucosylvitexin, hypericin and isoquercetin were 0.401, 0.993, 1.670 and 1.615 (RSD<2%). Compared with external standard method, except for isoquercetin in the two batches of samples (S39 and S41), there was no significant difference in the content of each component in other batches of samples (the relative deviations≤ 5%). CONCLUSIONS The established fingerprint and QAMS method are simple to operate and can be used to evaluate the quality of C. pinnatifida leaves. The sample from Chengde of Hebei Province is relatively good in quality. Chlorogenic acid (peak 1), glucosylvitexin (peak 3), and the corresponding components of peaks 2 and 5 may be differential markers affecting the quality of C. pinnatifida leaves.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973753

ABSTRACT

ObjectiveTo establish the quality standard for Fraxini Cortex(Fraxinus chinensis) dispensing granules based on standard decoction, and to provide a basis for the quality control of this dispensing granules. MethodHigh performance liquid chromatography(HPLC) specific chromatograms of 15 batches of Fraxini Cortex(F. chinensis) standard decoctions and 3 batches of Fraxini Cortex(F. chinensis) dispensing granules were established with the mobile phase of 0.1% phosphoric acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-10 min, 12%-15%B; 10-30 min, 15%-32%B) and the detection wavelength of 220 nm. And similarity evaluation, cluster analysis and principal component analysis(PCA) were also carried out. HPLC quantitative analysis of multi-components by single marker(QAMS) was established to determine the contents of the main components in the standard decoctions and dispensing granules. The contents of the corresponding components in Fraxini Cortex(F. chinensis) decoction pieces were also detected, and the transfer rates from decoction pieces to standard decoctions and dispensing granules were calculated. ResultThe similarities between specific chromatograms of 15 batches of Fraxini Cortex(F. chinensis) standard decoctions and 3 batches of Fraxini Cortex(F. chinensis) dispensing granules were all>0.9, and 7 common peaks were identified. The results of cluster analysis and PCA showed that there was some differences in the composition of different batches of standard decoctions, but did not show aggregation of origin. As the standard decoctions, the extract rate was 6.18%-11.62%, the contents of esculin, syringin, fraxin, esculetin, fraxetin, calceolarioside B were 44.92-103.51, 1.36-11.87, 33.26-90.73, 4.63-29.75, 2.40-16.86, 2.49-17.35 mg·g-1, and the transfer rates from decoction pieces to standard decoction were 25.21%-42.54%, 52.57%-88.84%, 43.43%-79.45%, 49.15%-88.27%, 49.22%-72.69%, 27.66%-47.67%, respectively. The extract rates of Fraxini Cortex(F. chinensis) dispensing granules were 10.4%-10.7%, the transfer rates of the above six components from decoction pieces to dispensing granules were 42.76%-43.17%, 80.01%-80.90%, 59.59%-59.88%, 51.35%-52.67%, 60.50%-60.93%, 37.98%-38.37%, respectively, which were generally consistent with the transfer rates from decoction pieces to standard decoctions. ConclusionThe established quality control standard of Fraxini Cortex(F. chinensis) dispensing granules based on standard decoctions is reasonable and reliable, which can provide reference for the quality control and process research of this dispensing granules.

20.
China Pharmacy ; (12): 1223-1227, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973623

ABSTRACT

OBJECTIVE To establish the fingerprint of Qiguiling mixture and the method for the content determination of 4 kinds of active components such as calycosin-7-glucoside, so as to control the quality of Qiguiling mixture. METHODS The fingerprints of 12 batches of Qiguiling mixture were established by HPLC. SPSS 25.0 software was used for cluster analysis and principal component analysis, and SIMCA 14.1 software was used for orthogonal partial least squares-discriminant analysis. The variable importance in projection (VIP) value greater than 1.0 was used as the index to screen the differential components. The contents of calycosin-7-glucoside, glycyrrhizin and glycyrrhizic acid were calculated by the quantitative analysis of multi- components by single marker (QAMS) with hesperidin as the internal reference, and the results were compared with external standard method. RESULTS In the fingerprints of 12 batches of samples, 17 common peaks were identified, and the similarities were more than 0.940. A total of 4 common peaks were identified, which were calycosin-7-glucoside (peak 6), glycyrrhizin (peak 8), hesperidin (peak 12), and glycyrrhizic acid (peak 17). The 12 batches of samples could be clustered into two categories, S4, S7-S9 and S11-S12 were clustered into one category, and the other batches of samples were clustered into one category. The cumulative variance contribution rate of the six principal components was 85.840%, and VIP values of peaks 15, 14, 4, 8 (glycyrrhizin) and 9 were all greater than 1.0. The relative error between the results of QAMS and external standard method was less than 5% (n=3) for the contents of calycosin-7-glucoside, glycyrrhizin and glycyrrhizic acid. CONCLUSIONS Established HPLC fingerprint and content determination method in this study can be used for quality control of Qigiling mixture. Five components such as glycyrrhizin are the differential components.

SELECTION OF CITATIONS
SEARCH DETAIL
...