Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurosci ; 13: 750, 2019.
Article in English | MEDLINE | ID: mdl-31379495

ABSTRACT

Erythropoietin (EPO) is not only a hormone that promotes erythropoiesis but also has a neuroprotective effect on neurons attributed to its known anti-apoptotic action. Previously, our group has demonstrated that recombinant-human EPO (rHu-EPO) can protect neurons and recovery motor activity in a chemical focal brain hypoxia model (Merelli et al., 2011). We and others also have reported that repetitive seizures can mimic a hypoxic- like condition by HIF-1α nuclear translocation and high neuronal expression P-gp. Here, we report that a single 20-min status epilepticus (SE) induces P-gp and EPO-R expression in cortical pyramidal neurons and only P-gp expression in astrocytes. In vitro, excitotoxic stress (300 µM glutamate, 5 min), can also induce the expression of EPO-R and P-gp simultaneously with both HIF-1α and NFkB nuclear translocation in primary cortical neurons. Primary astrocytes exposed to chemical hypoxia with CoCl2 (0.3 mM, 6 h) increased P-gp expression as well as an increased efflux of Rhodamine 123 (Rho123) that is a P-gp substrate. Tariquidar, a specific 3er generation P-gp-blocker was used as an efflux inhibitor control. Astrocytes treated with rHu-EPO showed a significant recovery of the Rho123 retention in a similar way as seen by Tariquidar, demonstrating for first time that rHu-EPO can inhibit the P-gp-dependent efflux activity. Taking together, these data suggest that stimulation of EPO depending signaling system could not only play a central role in brain cell protection, but this system could be a new tool for reverse the pharmacoresistant phenotype in refractory epilepsy as well as in other pharmacoresistant hypoxic brain diseases expressing P-gp.

2.
J Mol Neurosci ; 68(4): 590-602, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31054091

ABSTRACT

Erythropoietin, a multitarget molecule exhibited neuroprotective properties, especially against cerebral ischemia. However, little effort has been made to determinate both the administration pathway and doses that diminishes neuronal damage. In this study, we investigate the effect on CA1 region of different intranasal doses of rHuEPO (500, 1000 and 2500 IU/kg) applied in distinct post-damage times (1, 6, and 24 h) against ischemic cellular damage. Furthermore, most effective dose and time were used to evaluate gen and protein expression changes in 3 key molecules (EPO, EPOR, and ßcR). We established that CA1-region present histopathological damage in this ischemia model and that rHuEPO protects cells against damage, particularly at 1000 IU dose. Molecular data shows that EPO and EPOR gene expression are upregulated in a short term after damage treatment with rHuEPO (1 h); oppositely, BcR is upregulated in ischemic and Isc + EPO. Protein expression data displays no changes on EPO expression in evaluated times after treatment, but a tendency to increase 24 h after damage; in the opposite way, EPOR is upregulated significantly 6 h after treatment and this effect last until 24 h. So, our data suggest that a single intranasal dose of rHuEPO (1 h post-injury) provides histological neurorestoration in CA1 hippocampal region, even if we did not observe a dose-dependent dose effect, the medium dose evaluated (1000 UI/kg of b.w.) was more effective and sufficient for induces molecular changes that provides a platform for neuroprotection.


Subject(s)
Brain Ischemia/drug therapy , CA1 Region, Hippocampal/drug effects , Erythropoietin/therapeutic use , Neuroprotective Agents/therapeutic use , Administration, Intranasal , Animals , CA1 Region, Hippocampal/metabolism , Erythropoietin/administration & dosage , Erythropoietin/pharmacology , Humans , Male , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL