Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
1.
Technol Health Care ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38968030

ABSTRACT

BACKGROUND: Dengue fever is rapidly becoming Malaysia's most pressing health concern, as the reported cases have nearly doubled over the past decade. Without efficacious antiviral medications, vector control remains the primary strategy for battling dengue, while the recently introduced tetravalent immunization is being evaluated. The most significant and dangerous risk increasing recently is vector-borne illnesses. These illnesses induce significant human sickness and are transmitted by blood-feeding arthropods such as fleas, parasites, and mosquitos. A thorough grasp of various factors is necessary to improve prediction accuracy and typically generate inaccurate and unstable predictions, as well as machine learning (ML) models, weather-driven mechanisms, and numerical time series. OBJECTIVE: In this research, we propose a novel method for forecasting vector-borne disease risk using Radial Basis Function Networks (RBFNs) and the Darts Game Optimizer (DGO) algorithm. METHODS: The proposed approach entails training the RBFNs with historical disease data and enhancing their parameters with the DGO algorithm. To prepare the RBFNs, we used a massive dataset of vector-borne disease incidences, climate variables, and geographical data. The DGO algorithm proficiently searches the RBFN parameter space, fine-tuning the model's architecture to increase forecast accuracy. RESULTS: RBFN-DGO provides a potential method for predicting vector-borne disease risk. This study advances predictive demonstrating in public health by shedding light on effectively controlling vector-borne diseases to protect human populations. We conducted extensive testing to evaluate the performance of the proposed method to standard optimization methods and alternative forecasting methods. CONCLUSION: According to the findings, the RBFN-DGO model beats others in terms of accuracy and robustness in predicting the likelihood of vector-borne illness occurrences.

2.
Evol Comput ; : 1-25, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889350

ABSTRACT

Recently, computationally intensive multiobjective optimization problems have been efficiently solved by surrogate-assisted multiobjective evolutionary algorithms. However, most of those algorithms can only handle no more than 200 decision variables. As the number of decision variables increases further, unreliable surrogate models will result in a dramatic deterioration of their performance, which makes large-scale expensive multiobjective optimization challenging. To address this challenge, we develop a large-scale multiobjective evolutionary algorithm guided by low-dimensional surrogate models of scalarization functions. The proposed algorithm (termed LDS-AF) reduces the dimension of the original decision space based on principal component analysis, and then directly approximates the scalarization functions in a decompositionbased multiobjective evolutionary algorithm. With the help of a two-stage modeling strategy and convergence control strategy, LDS-AF can keep a good balance between convergence and diversity, and achieve a promising performance without being trapped in a local optimum prematurely. The experimental results on a set of test instances have demonstrated its superiority over eight state-of-the-art algorithms on multiobjective optimization problems with up to 1000 decision variables using only 500 real function evaluations.

3.
J Mech Behav Biomed Mater ; 157: 106611, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38852243

ABSTRACT

Dynamic soft tissue characterisation is an important element in robotic minimally invasive surgery. This paper presents a novel method by combining neural network with recursive least square (RLS) estimation for dynamic soft tissue characterisation based on the nonlinear Hunt-Crossley (HC) model. It develops a radial basis function neural network (RBFNN) to compensate for the error caused by natural logarithmic factorisation (NLF) of the HC model for dynamic RLS estimation of soft tissue properties. The RBFNN weights are estimated according to the maximum likelihood principle to evaluate the probability distribution of the neural network modelling residual. Further, by using the linearisation error modelled by RBFNN to compensate for the linearised HC model, an RBFNN-based RLS algorithm is developed for dynamic soft tissue characterisation. Simulation and experimental results demonstrate that the proposed method can effectively model the natural logarithmic linearisation error, leading to improved accuracy for RLS estimation of the HC model parameters.

4.
Food Chem ; 454: 139774, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810453

ABSTRACT

This study established long short-term memory (LSTM), convolution neural network long short-term memory (CNN_LSTM), and radial basis function neural network (RBFNN) based on optimized excitation-emission matrix (EEM) from fish eye fluid to predict freshness changes of rainbow trout under nonisothermal storage conditions. The method of residual analysis, core consistency diagnostics, and split-half analysis of parallel factor analysis was used to optimize EEM data, and two characteristic components were extracted. LSTM, CNN_LSTM, and RBFNN models based on characteristic components of EEM used to predict the freshness indices. The results demonstrated the relative errors of RBFNN models with an R2 above 0.96 and relative errors less than 10% for K-value, total viable counts, and volatile base nitrogen, which were better than those of LSTM and CNN_LSTM models. This study presents a novel approach for predicting the freshness of rainbow trout under nonisothermal storage conditions.


Subject(s)
Deep Learning , Food Storage , Oncorhynchus mykiss , Seafood , Spectrometry, Fluorescence , Animals , Oncorhynchus mykiss/metabolism , Seafood/analysis , Spectrometry, Fluorescence/methods , Neural Networks, Computer
5.
Entropy (Basel) ; 26(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38785617

ABSTRACT

Learning in neural networks with locally-tuned neuron models such as radial Basis Function (RBF) networks is often seen as instable, in particular when multi-layered architectures are used. Furthermore, universal approximation theorems for single-layered RBF networks are very well established; therefore, deeper architectures are theoretically not required. Consequently, RBFs are mostly used in a single-layered manner. However, deep neural networks have proven their effectiveness on many different tasks. In this paper, we show that deeper RBF architectures with multiple radial basis function layers can be designed together with efficient learning schemes. We introduce an initialization scheme for deep RBF networks based on k-means clustering and covariance estimation. We further show how to make use of convolutions to speed up the calculation of the Mahalanobis distance in a partially connected way, which is similar to the convolutional neural networks (CNNs). Finally, we evaluate our approach on image classification as well as speech emotion recognition tasks. Our results show that deep RBF networks perform very well, with comparable results to other deep neural network types, such as CNNs.

6.
Med Image Anal ; 95: 103204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761438

ABSTRACT

Due to the intra-class diversity of mitotic cells and the morphological overlap with similarly looking imposters, automatic mitosis detection in histopathology slides is still a challenging task. In this paper, we propose a novel mitosis detection model in a weakly supervised way, which consists of a candidate proposal network and a verification network. The candidate proposal network based on patch learning aims to separate both mitotic cells and their mimics from the background as candidate objects, which substantially reduces missed detections in the screening process of candidates. These obtained candidate results are then fed into the verification network for mitosis refinement. The verification network adopts an RBF-based subcategorization scheme to deal with the problems of high intra-class variability of mitosis and the mimics with similar appearance. We utilize the RBF centers to define subcategories containing mitotic cells with similar properties and capture representative RBF center locations through joint training of classification and clustering. Due to the lower intra-class variation within a subcategory, the localized feature space at subcategory level can better characterize a certain type of mitotic figures and can provide a better similarity measurement for distinguishing mitotic cells from nonmitotic cells. Our experiments manifest that this subcategorization scheme helps improve the performance of mitosis detection and achieves state-of-the-art results on the publicly available mitosis datasets using only weak labels.


Subject(s)
Breast Neoplasms , Mitosis , Mitosis/physiology , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Image Interpretation, Computer-Assisted/methods , Algorithms , Deep Learning
7.
IET Syst Biol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789402

ABSTRACT

Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.

8.
Neural Netw ; 176: 106335, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733793

ABSTRACT

Providing a model that achieves a strong predictive performance and is simultaneously interpretable by humans is one of the most difficult challenges in machine learning research due to the conflicting nature of these two objectives. To address this challenge, we propose a modification of the radial basis function neural network model by equipping its Gaussian kernel with a learnable precision matrix. We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed. In particular, the eigenvectors explain the directions of maximum sensitivity of the model revealing the active subspace and suggesting potential applications for supervised dimensionality reduction. At the same time, the eigenvectors highlight the relationship in terms of absolute variation between the input and the latent variables, thereby allowing us to extract a ranking of the input variables based on their importance to the prediction task enhancing the model interpretability. We conducted numerical experiments for regression, classification, and feature selection tasks, comparing our model against popular machine learning models, the state-of-the-art deep learning-based embedding feature selection techniques, and a transformer model for tabular data. Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors but also provides meaningful and interpretable results that potentially could assist the decision-making process in real-world applications. A PyTorch implementation of the model is available on GitHub at the following link.1.


Subject(s)
Machine Learning , Neural Networks, Computer , Humans , Normal Distribution , Algorithms , Deep Learning
9.
Int Urol Nephrol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748365

ABSTRACT

In clinical decision-making for chronic disorders like chronic kidney disease, high variability often leads to uncertainty and negative outcomes. Deep learning techniques have been developed as useful tools for minimizing the chance and improving clinical decision-making. Moreover, traditional techniques for chronic kidney disease recognition frequently the accuracy is compromised as it relies on limited sets of biological attributes. Therefore, in the proposed work, a combination of deep radial bias network and the puma optimization algorithm is suggested for precised chronic kidney disease classification. Initially, the accessed data undergo preprocessing using Spectral Z score Bag Boost K-Means SMOTE transformation, which includes robust scaling, data cleaning, balancing, encoding, handling missing values, min-max scaling, and z-standardization. Feature selection is then conducted using the hybrid methodology of Role-oriented Binary Walrus Grey Wolf Algorithm to choose discriminative features for improving classification accuracy. Then, Auto Encoder with Patch-Based Principal Component Analysis is employed for dimensionality reduction to minimize the processing time. Finally, the proposed classification method utilizes deep radial bias and the puma optimization search algorithm for effective chronic kidney disease classification. The introduced scheme is tested on two datasets: the risk factor prediction of chronic kidney disease dataset and chronic kidney disease dataset, which provides accuracies of 99.02%, and 99.15%, respectively. Experiments demonstrate that the proposed model identifies chronic kidney disease more accurately than the existing approaches.

10.
Heliyon ; 10(4): e26429, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434061

ABSTRACT

The presence of missing data is a significant data quality issue that negatively impacts the accuracy and reliability of data analysis. This issue is especially relevant in the context of accelerated tests, particularly for step-stress accelerated degradation tests. While missing data can occur due to objective factors or human error, high missing rate is an inevitable pattern of missing data that will occur during the conversion process of accelerated test data. This type of missing data manifests as a degradation dataset with unequal measuring intervals. Therefore, developing a more appropriate imputation method for accelerated test data is essential. In this study, we propose a novel hybrid imputation method that combines the LSSVM and RBF models to address missing data problems. A comparison is conducted between the proposed model and various traditional and machine learning imputation methods using simulation data, to justify the advantages of the proposed model over the existing methods. Finally, the proposed model is implemented on real degradation datasets of the super-luminescent diode (SLD) to validate its performance and effectiveness in dealing with missing data in step-stress accelerated degradation test. Additionally, due to the generalizability of the proposed method, it is expected to be applicable in other scenarios with high missing data rates.

11.
ISA Trans ; 148: 114-127, 2024 May.
Article in English | MEDLINE | ID: mdl-38453583

ABSTRACT

To handle with the nonlinear external disturbances and unmodeled dynamics of self-balanced vehicle (SBV), a novel adaptive trajectory tracking controller based on asymptotic prescribed performance is proposed. First, a velocity planner based on kinematic is constructed to control the velocity signal to improve the motion stability of SBV. Second, the prescribed performance function (PPF) is designed to prescribe transient-state and steady-state performances (TSP). Afterwards, an optimization-based predictive control (OPC) is proposed for accurate trajectory tracking of SBV. Furthermore, a modified radial basis function neural network (RBFNN) approximator is developed to compensate the unmodeled dynamics and the nonlinear external disturbances of the SBV. The overall system stability is proved with the help of Lyapunov theorem. Finally, the tracking performance and anti-interference robustness of the proposed control method are verified by comparative numerical simulations.

12.
Environ Monit Assess ; 196(3): 315, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416264

ABSTRACT

The estimation of exposures to humans from the various sources of radiation is important. Radiation hazard indices are computed using procedures described in the literature for evaluating the combined effects of the activity concentrations of primordial radionuclides, namely, 238U, 232Th, and 40 K. The computed indices are then compared to the allowed limits defined by International Radiation Protection Organizations to determine any radiation hazard associated with the geological materials. In this paper, four distinct radial basis function artificial neural network (RBF-ANN) models were developed to predict radiation hazard indices, namely, external gamma dose rates, annual effective dose, radium equivalent activity, and external hazard index. To make RBF-ANN models, 348 different geological materials' gamma spectrometry data were acquired from the literature. Radiation hazards indices predicted from each RBF-ANN model were compared to the radiation hazards calculated using gamma spectrum analysis. The predicted hazard indices values of each RBF-ANN model were found to precisely align with the calculated values. To validate the accuracy and the adaptability of each RBF-ANN model, statistical tests (determination coefficient (R2), relative absolute error (RAE), root mean square error (RMSE), Nash-Sutcliffe Efficiency (NSE)), and significance tests (F-test and Student's t-test) were performed to analyze the relationship between calculated and predicted hazard indices. Low RAE and RMSE values as well as high R2, NSE, and p-values greater than 0.95, 0.71, and 0.05, respectively, were found for RBF-ANN models. The statistical tests' results show that all RBF-ANN models created exhibit precise performance, indicating their applicability and efficiency in forecasting the radiation hazard indices of geological materials. All the RBF-ANN models can be used to predict radiation hazard indices of geological materials quite efficiently, according to the performance level attained.


Subject(s)
Embryonic Development , Environmental Monitoring , Humans , Gamma Rays , Geology , Neural Networks, Computer
13.
Microsc Res Tech ; 87(5): 1052-1062, 2024 May.
Article in English | MEDLINE | ID: mdl-38230557

ABSTRACT

The diagnosis and treatment of cancer is one of the most challenging aspects of the medical profession, despite advances in disease diagnosis. MicroRNAs are small noncoding RNA molecules involved in regulating gene expression and are associated with several cancer types. Therefore, the analysis of microRNA data has become one of the most important areas of cancer research in recent years. This paper presents an improved method for cancer-type classification based on microRNA expression data using a hybrid radial basis function (RBF) and particle swarm optimization (PSO) algorithm. Two datasets containing microRNA information were used, and preprocessing and normalization operations were performed on the raw data. Feature selection was carried out by using the PSO algorithm, which can identify the most relevant and informative features in the data along with helping to prioritize them. Using a PSO algorithm for feature selection is an effective approach to microRNA analysis. This enhances the accuracy and reliability of cancer-type classifications based on microRNA expression data. In the proposed method, we, respectively, achieved an accuracy of 0.95% and 0.91% on both datasets, with an average of 0.93%, using an improved RBF neural network classifier. These results demonstrate that the proposed method outperforms previous works. RESEARCH HIGHLIGHTS: To enhance the accuracy of cancer-type classifications based on microRNA expression data. We present a minimal feature selection method using particle swarm optimization to reduce computational load & radial basis function to improve accuracy.


Subject(s)
MicroRNAs , Neoplasms , Humans , Reproducibility of Results , Algorithms , Neural Networks, Computer , Neoplasms/diagnosis , Neoplasms/genetics , MicroRNAs/genetics
14.
ISA Trans ; 146: 308-318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199841

ABSTRACT

This paper proposes an extended state observer (ESO) based data-driven set-point learning control (DDSPLC) scheme for a class of nonlinear batch processes with a priori P-type feedback control structure subject to nonrepetitive uncertainties, by only using the process input and output data available in practice. Firstly, the unknown process dynamics is equivalently transformed into an iterative dynamic linearization data model (IDLDM) with a residual term. A radial basis function neural network is adopted to estimate the pseudo partial derivative information related to IDLDM, and meanwhile, a data-driven iterative ESO is constructed to estimate the unknown residual term along the batch direction. Then, an adaptive set-point learning control law is designed to merely regulate the set-point command of the closed-loop control structure for realizing batch optimization. Robust convergence of the output tracking error along the batch direction is rigorously analyzed by using the contraction mapping approach and mathematical induction. Finally, two illustrative examples from the literature are used to validate the effectiveness and advantage of the proposed design.

15.
Neural Netw ; 172: 106098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199153

ABSTRACT

This paper proposes an improved version of physics-informed neural networks (PINNs), the physics-informed kernel function neural networks (PIKFNNs), to solve various linear and some specific nonlinear partial differential equations (PDEs). It can also be considered as a novel radial basis function neural network (RBFNN). In the proposed PIKFNNs, it employs one-hidden-layer shallow neural network with the physics-informed kernel functions (PIKFs) as the customized activation functions. The PIKFs fully or partially contain PDE information, which can be chosen as fundamental solutions, green's functions, T-complete functions, harmonic functions, radial Trefftz functions, probability density functions and even the solutions of some linear simplified PDEs and so on. The main difference between the PINNs and the proposed PIKFNNs is that the PINNs add PDE constraints to the loss function, and the proposed PIKFNNs embed PDE information into the activation functions of the neural network. The feasibility and accuracy of the proposed PIKFNNs are validated by some benchmark examples.


Subject(s)
Benchmarking , Diethylstilbestrol/analogs & derivatives , Neural Networks, Computer , Physics
16.
Int J Comput Assist Radiol Surg ; 19(2): 209-221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37787938

ABSTRACT

PURPOSE: The development of cardiovascular interventional surgery robots can realize master-slave interventional operations, which will effectively solve the problem of surgeons being injured by X-ray radiation. The delivery accuracy and safety of interventional instruments such as guidewire are the most important issues in the development of robotic systems. Most of the current control methods are position control or force feedback control, which cannot take into account delivery accuracy and safety. METHODS: A cardiovascular interventional surgery robotic system integrated force sensors is developed. A novel force/position controller, which includes a radial basis function neural networks-based inner loop position controller and a force-based admittance outer loop controller, is proposed. Furthermore, a series of simulations and vascular model experiments are carried out to demonstrate the feasibility and accuracy of the proposed controller. RESULTS: The designed cardiovascular interventional robot is flexible to enter the target vessel branch. Experimental results indicate that the proposed controller can effectively improve the delivery accuracy of the guidewire and reduce the contact force with the vessel wall. CONCLUSIONS: The proposed controller based on radial basis function neural network and admittance control is effective in improving delivery accuracy and reducing contact force. The algorithm needs to be further validated in vivo experiments.


Subject(s)
Robotic Surgical Procedures , Robotics , Humans , Vascular Surgical Procedures/methods , Equipment Design , Mechanical Phenomena
17.
J Environ Manage ; 347: 119126, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37778063

ABSTRACT

Pollution source identification is vital in water safety management. An integrated simulation-optimization modelling framework comprising a process-based hydrodynamic water quality model, artificial neural network surrogate model and particle swarm optimization (PSO) was proposed to achieve rapid, accurate and reliable pollution source identification. In this study, the hydrodynamics and water quality processes in a straight lab-based flume were simulated to test pollution source identification under steady flow conditions. Additionally, the pollution source identification in the unsteady flow conditions was examined using a real-life estuary, specifically the Yangtze River estuary. First, we developed two process-based models to simulate hydrodynamics and water quality in the flume and estuary. Then, the data generated from the process-based models were used to develop surrogate models. Three typical artificial neural networks (ANNs) algorithms: backpropagation (BP), radial basis function (RBF) and general regression neural networks (GRNN) were selected to develop surrogates for process-based models (PBMs), and they were coupled with PSO algorithm to achieve the hybrid modelling framework for pollution source identification. Our results showed that hybrid PBM-ANNs-PSO models could be applied to identify the pollution source and quantify release intensity in spatial distribution when the discharge type was assumed as the point source with a continuous release. Multiple-performance criteria metrics, in terms of the coefficient of determination, root-mean-square error, mean absolute error, evaluated the model performance as "Excellent prediction". The BP-PSO models consistently appear to be the top-performing source identification model within the developed models, with most cases of relative error (RE) values lower than 5%. The new insights from the hybrid modelling framework would provide useful information for the local government agency to make reasonable decisions regarding pollution source identification issues.


Subject(s)
Algorithms , Neural Networks, Computer , Computer Simulation , Water Quality , Rivers
18.
Sensors (Basel) ; 23(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896523

ABSTRACT

A camera equipped with a transparent shield can be modeled using the pinhole camera model and residual error vectors defined by the difference between the estimated ray from the pinhole camera model and the actual three-dimensional (3D) point. To calculate the residual error vectors, we employ sparse calibration data consisting of 3D points and their corresponding 2D points on the image. However, the observation noise and sparsity of the 3D calibration points pose challenges in determining the residual error vectors. To address this, we first fit Gaussian Process Regression (GPR) operating robustly against data noise to the observed residual error vectors from the sparse calibration data to obtain dense residual error vectors. Subsequently, to improve performance in unobserved areas due to data sparsity, we use an additional constraint; the 3D points on the estimated ray should be projected to one 2D image point, called the ray constraint. Finally, we optimize the radial basis function (RBF)-based regression model to reduce the residual error vector differences with GPR at the predetermined dense set of 3D points while reflecting the ray constraint. The proposed RBF-based camera model reduces the error of the estimated rays by 6% on average and the reprojection error by 26% on average.

19.
Schizophr Res ; 261: 36-46, 2023 11.
Article in English | MEDLINE | ID: mdl-37690170

ABSTRACT

Electroencephalography is a method of detecting and analyzing electrical activity in the brain. This electrical activity can be recorded and processed to aid in the clinical diagnosis of mental disorders. In this study, a novel system for classifying schizophrenia patients from EEG recordings is presented. The developed algorithm decomposes the EEG signals into a system of radial basis functions using the method of fuzzy means. This decomposition helps to obtain the information from the various electrodes of the EEG and allows separating between healthy controls and patients with schizophrenia. The proposed method has been compared with classical machine learning algorithms, such as, K-Nearest Neighbor, Adaboost, Support Vector Machine, and Bayesian Linear Discriminant Analysis. The results show that the proposed method obtains the highest values in terms of balanced accuracy, recall, precision and F1 score, close to 93 % in all cases. The model developed in this study can be implemented in brain activity analysis systems that help in the prediction of patients with schizophrenia.


Subject(s)
Deep Learning , Schizophrenia , Humans , Schizophrenia/diagnosis , Bayes Theorem , Electroencephalography/methods , Algorithms , Support Vector Machine , Signal Processing, Computer-Assisted
20.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687505

ABSTRACT

To further improve the operational performance of a phononic crystal air-coupled ultrasonic transducer while reducing the number of simulations, an intelligent optimization design strategy is proposed by combining finite element simulation analysis and artificial intelligence (AI) methods. In the proposed strategy, the structural design parameters of 1-3 piezoelectric composites and acoustic impedance gradient matching layer are sampled using the optimal Latin hypercube sampling (OLHS) method. Moreover, the COMSOL software is utilized to calculate the performance parameters of the transducer. Based on the simulation data, a radial basis function neural network (RBFNN) model is trained to establish the relationship between the design parameters and the performance parameters. The accuracy of the approximation model is verified through linear regression plots and statistical methods. Finally, the NSGA-II algorithm is used to determine the design parameters of the transducer. After optimization, the band gap widths of the piezoelectric composites and acoustic impedance gradient matching layer are increased by 16 kHz and 13.5 kHz, respectively. Additionally, the -6 dB bandwidth of the transducer is expanded by 11.5%. The simulation results and experimental results are consistent with the design objectives, which confirms the effectiveness of the design strategy. This work provides a feasible strategy for the design of high-performance air-coupled ultrasonic transducers, which is of great significance for the development of non-destructive testing technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...